

Terrain Q.

Design, specification and installation guide

The Genuit Group of businesses are recognised as professionals and experts in their given markets. From commercial and residential applications, heating and ventilation, fabrications, roads and highways to plumbing, large scale water storage and drainage, tall building applications and green infrastructure solutions. Our goal is to be the leading, sustainable products Group – helping construction build better.

Together, we aim to provide solutions to the sustainability and construction challenges of today and in the future. The increased need for resilient drainage systems, for example, the need for important Green Urbanisation, for cleaner, healthier air, for simpler, faster and more cost-effective drainage installations, for innovative future-ready systems and for low/zero-carbon heating and low-carbon construction.

Helping construction build better is at the heart of what we do. Through our sustainability strategy, the resilient way in which we operate, our capabilities and scalability, and our speed and agility through working together to understand exactly what you need to succeed.

It's an inclusive approach to business - and one our customers trust.

Manthorpe Building Products

Nű-Heat

UnderFloor Climate Management

Polypipe Middle East

AT THE HEART OF COMMERCIAL AND TALL BUILDINGS.

At Polypipe Middle East, we harness our ingenuity and creativity to deliver class-leading solutions and product sustainability, with optimised whole-life costs, unrivalled technical support and on-the-ground assistance.

We understand the challenges today's projects face, including climate change, air quality and flooding, and in-industry regulations, skilled labour shortages and the lack of on-site storage facilities. From high-rise residential and commercial office projects to healthcare and leisure facilities, we develop systems that support you, that facilitate easier, more cost-effective ways to install.

Integral to our development process is providing innovative sustainable solutions that support safety, whether from the product itself or in the way it's installed. Our products are designed for a long life, use recycled content and are recyclable at end of life, enabling it to live on in the circular economy. We challenge ourselves on how we help solve on-site problems, whether lack of labour or on-site space, and look to develop solutions that benefit both the installing contractors and the occupants alike.

Polypipe Middle East, part of the Genuit Group. Helping construction build better.

Terrain Q Technical Manual 2021 Terrain Q Technical Manual 2021

SECTION 1 WELCOME TO POLYPIPE

> HE GENUI GROUP POLYPIPE MIDDLE EAST

CONTENTS

Contents

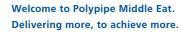
Polypipe Middle East is always working to develop more exceptional products and more cost-effective ways

MORE INNOVATION. MORE EXPERTISE. MORE SUPPORT.

to complete your project. For nearly 60 years, our Terrain brand has been the industry benchmark for drainage systems.

PRODUCTS AND SYSTEMS

Our specialism is tall buildings, so our products, systems and services reflect that, in design, performance and ease of installation. Our Terrain brand of products and systems have been no exception, from our benchmark, FUZE drainage stacks and PVC soil and waste systems, to the Terrain Q noise reducing system, P.A.P.A.® & Pleura Vent Systems and Firetraps.


TECHNICAL

All our products and systems are backed by our hands-on technical team, providing expert support to ensure you receive a system that's right for your project. Whether it's a single component, or a fully fabricated system, you can call upon our specialist advice, and rely on us to deliver exactly what you need.

POLYPIPE ADVANTAGE SERVICE

We're constantly working and investing to discover new products and systems that take the complexities out of construction. And we apply that philosophy to ease of installation. Our Polypipe Advantage Service has been specifically introduced to make everything simple from beginning to end. From the design and planning of your project, to ordering, delivery, technical support, and customer service. Through Polypipe Advantage, our drainage stack systems and MecFlow supply systems can be fabricated to your own specification; created off-site, and delivered as a full, ready-toinstall system on-site. Facilitating a faster installation process, whilst addressing skilled labour shortages and the lack of on-site storage facilities.

POLYPIPE ADVANTAGE

SECTION 1 Welcome to Polypipe	Page
The Genuit Group	2
Polypipe Middle East	3 - 4
Contents	5
SECTION 2 Introducing Terrain Q	
Introducing Terrain Q and Features and Benefits	6 - 7
The System and Technical Features	8 – 9
SECTION 3 Sound Protection	
The Noise	10 – 11
Acoustic Testing and System Design	12 – 13
SECTION 4 Terrain Q Pipe and Fittings	
Pipes, Double Depth Socket, Slip Coupler and Double Depth Socket	14 – 15
Bends and Double Socket Bend	16 – 17
Branches	18 – 19
Access Pipe, Reducers and Socket Plug	20 – 21
Complementary PVC Fittings	22 – 23
SECTION 5 Chemical Resistance	
Chemical Resistance Tables	24 – 33
SECTION 6 Polypipe Advantage, Storage and Handling	
Storage and Handling	34 – 35
SECTION 7 Installation	
Design Considerations and general Notes	36 – 37
Thermal Expansion and Vertical Push-fit System	38 – 39
Horizontal Expansion System	40 – 41
Acoustic Installation Guidance and Managing Sounds	42 – 43
Branch Pipe Sizing	44 – 45
Site Work Instructions and Information Tables	46 – 47
SECTION 8 Fire Sleeves and Collars	
Fire Sleeves	48 – 49
SECTION 9 System Testing and Maintenance	
System Testing and Maintenance	50 – 53
ECTION 10 System Specification	
System Specification Overview	54 – 55
ECTION 11 Support	
Support	56 – 57
ECTION 12 Approvals	

Features and benefits

Terrain Q is a simple, reliable alternative to other traditional and noise reducing drainage systems, taking an already tried and tested material, and developing it to give you so much more.

'More' in terms of multi-layer material benefits. 'More' for it's engineered designed fittings. And 'more' in achieving a fire classification rating of B-s1, d0**; making it ideal for multi-occupancy and tall building projects.

* Mineral reinforced central layer, providing high stability to shock and vibrations making it an excellent choice for its noise reducing properties **Fire classification rating B-s1, d0 according to EN13501, Terrain Q to be installed in accordance with building regulations. Where required we recommend Terrain Q is installed with Terrain Firetrap Sleeves.

Terrain Q benefits your project more

CHEMICAL RESISTANCE

Terrain Q has excellent chemical resistance due to its high molecular weight and non-polar polymer structure. It is resistant to fluids from PH2-PH12.

INCREASED MECHANICAL STRENGTH

Due to the addition of micro-fibres to the material formulation, Terrain Q has improved temperature characteristics giving it excellent mechanical strength over a range of fluid temperatures.

ANTI-FOULING

Terrain Q is manufactured using an anti-fouling additive within the internal bore. This helps to minimise encrustation build up, stopping sudden changes in flow direction which would increase noise.

UV PROTECTION

The Terrain Q material formulation protects against oxidation by direct exposure to UV radiation from sunlight.

LOW NOISE TRANSMISSION

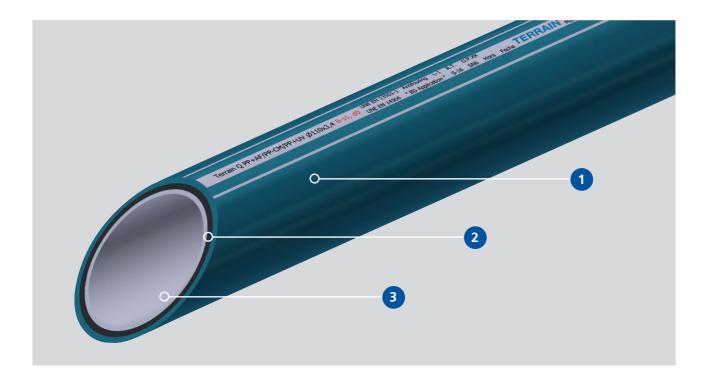
Due to its material properties Terrain Q provides high resistance to the propagation of noise from water flowing at high velocities within its internal hore

ABRASION RESISTANCE

The smooth and mechanically robust bore of Terrain Q protects against material erosion due to the flow of aggressive fluids over long periods of time.

FIRE CLASSIFICATION

Terrain Q has the highest rating for an organic material when tested to BS EN 13501. It is a multi-layer polypropylene system to achieve the rating B-s1, d0 when tested in accordance with the standard. Irrespective of this fire resistance, Terrain Q shall be installed in accordance with approved document Building Regulation B at all times.


EASY HANDLING

The Terrain Q system is more light in weight than traditional materials, making it an obvious choice due to ease of installation and handling.

The system

Noise-reducing drainage system B-s1, d0

Terrain Q is a new pipe system especially developed to be applied within the structure of multi-occupancy buildings. It is manufactured with the latest generation of multi-layer polypropylene, manufactured to the 495.4.5 dimensional requirements of BS EN 1451 Plastics piping systems for soil and waste drainage (low and high temperature) within the building structure - Polypropylene (PP).

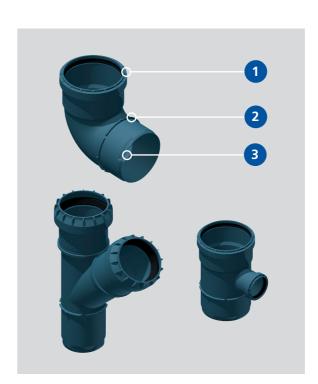
Terrain Q stands out for its high resistance to fire, rated B-s1, d0 according to the European standard EN 13501 and for its excellent sound absorbing properties, according to the data provided by the Fraunhofer Institute for Building Physics IBP.

Its compatibility with other systems and fittings, make Terrain Q an ideal choice for projects that need noise reducing drainage systems.

Terrain Q has a wide range of pipes and fittings, from 40mm to 200mm diameter, making it an ideal solution for the installation of a complete drainage system.

TERRAIN MULTI-LAYER TECHNOLOGY

- Blue external layer (RAL 5001) made of PP+UV+RF with white stripes (RAL 9003). The tough protective shell of the pipe, with UV protection. Sturdy and highly impact resistance.
- Black intermediate layer (RAL 9004) made of PP+CM+RF.
 Mineral-reinforced plastic. Provided high stability and establishes the superior noise-reducing effect. There is also a fire retardant additive incorporated within this layer.
- 3. White internal layer (RAL 9003) made of PP+AF. Resistant to high temperatures (up to 97°C) chemical and abrasion resistance. Surface smoothness due to an anti-fouling additive, stopping build up of encrustations, which can increase noise.


Technical features

Terrain Q- Polypropylene pipe

Terrain Q is made of PP multi-layers for soil and waste water drainage, with fire classification B-s1, d0. The external layer has UV protection and the internal layer includes anti-fouling protection.

т	TECHNICAL SPECIFICATIONS								
PROPERTIES	TEST METHOD	TYPICAL VALUE	UNIT						
Density	ISO 1183	>1200	kg/m³						
Ring rigidity	EN 9969	>4	SN						
Ring flexibility	EN 1446	Without failure	-						
Resistance to impact (round-the -lock method)	EN 744	TIR ≤10%	-						
Water tightness (0,5 bar, 1 min)	EN 1053	Leak proof	-						
Air tightness	EN 1054	Leak proof	-						
High temperature cycle	EN 1055	Leak proof	-						
Resistance to impact	EN 1411	H50 > 1m	-						
Joint tightness with joint of plastic tightness	EN 1277	Leak proof	-						
Fire classification	EN 13501	B-s1,d0	-						
Halogen components	Halogen free	-	-						

Table 2.01

ADDITIONAL FEATURES TO AID INSTALLATION

- 1. Angle markings at 22.5 degrees
- 2. Insert stopper
- 3. Relief to assist insertion

"Terrain Q combines its excellent noise reducing properties with its high fire retardancy, making it an ideal choice for all your drainage requirements."

3. Sound Protection

The following section references The Sound Transmission Inside Building Publication by The British Plastic Federation.

Noise from wastewater flow when it travels through a building can be an annoyance. This is unpleasant in all homes but particularly intrusive in multi-occupancy residential and commercial properties.

Example of buildings where sound attenuation is often specified:

Office buildings

Retail outlets

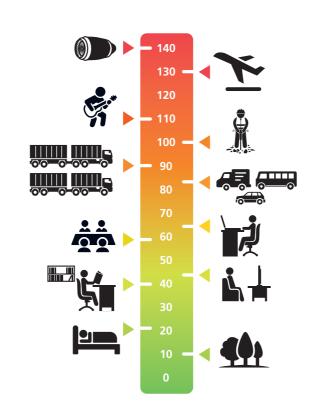
Schools and universities

- Shared dwellings
- Multi-storey apartments
- Hotels
- Hospitals and care facilities

As noise continues to increase inherently from our 24/7 lives, clients and specifiers are seeking to minimise avoidable noise by soundproofing buildings. The ability to engineer plastic pipes through material and construction choices means that they can be designed to absorb both airborne and structure-borne sound. This makes them ideally suited to the transport of wastewater through a building.

SOUND TRANSMISSION IN BUILDINGS

Noise can be transferred through the air (airborne) or through the building fabric (structure-borne). A person's sensitivity to noise, when above the hearing threshold, will depend on the source and the location. For example, the acceptable sound level at a rock concert which you have chosen to attend is very different to the level tolerated when trying to sleep in a noisy hotel or relaxing in a quiet country location.


Airborne noise

Structure-borne noise

MAXIMUM ACCEPTABLE NOISE IN BUILDING

Recommended maximum sound levels in residential buildings vary by country, with an absolute sound pressure level of 30dB(A) being generally accepted as the maximum in rooms requiring sound insulation, for example living rooms and bedrooms. This absolute value is measured against a fixed reference point (i.e. threshold of hearing) and takes into account all noise from building services including wastewater running through pipes. However, a range of requirements may be seen across projects as the value is not well defined. As buildings become quieter due to improvements in insulation products and practice, so the noise from building services is more noticeable and the requirements for noise reduction more stringent.

NOISE FROM WASTEWATER

Soil and waste systems inside buildings have the potential to contribute to noises inside a property and to an adjoining property.

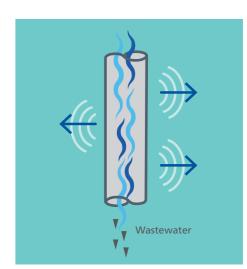
- Airborne noise generated by wastewater flowing inside the pipes.
- Structure-borne noise generated by vibration (acoustic resonance) of the pipe as the sound waves generated by the wastewater transmitted through the pipe wall, pipe clips and brackets to the building structure.

Both sources of noise can be managed by good system design, product choice and correct installation. To further reduce sound transmission pipe wrapping materials, typically mineral wool should be used. Pipes should be enclosed to their full height. For full guidelines please refer to Section 7, Installation.

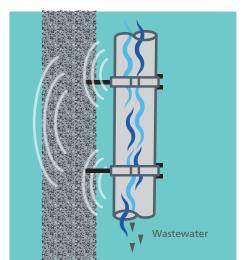
REDUCING AIRBORNE NOISE

The multi-layer construction of the Terrain Q piping system is specifically designed to reduce the transmission of noise vibration through the pipe wall as it propagates from the internal bore surface to the outside surface.

Starting at the internal layer Terrain Q has a smooth bore which includes anti-fouling additives reducing the risk of build-up which would disrupt the flow and increase airborne noise. The intermediate layer of Terrain Q is mineral reinforced which plays a key role with high stability and excellent absorption in reducing the transmission of noise.


The external layer of Terrain Q is a tough protected shell that reflects sound waves into the layer boundaries.

REDUCING STRUCTURE-BORNE NOISE


The best acoustic performance is achieved by preventing structure-borne sound. Good design is important, that's why Terrain Q is the obvious choice with a 20dB rating at 4l/s.

Terrain Q fittings are manufactured using the same mineral reinforced plastic that is in the intermediate layer of the pipe giving high stability and excellent absorption against shocks and vibrations. Coupled with a ring seal jointing method Terrain Q gives you a fantastic noise reducing piping system.

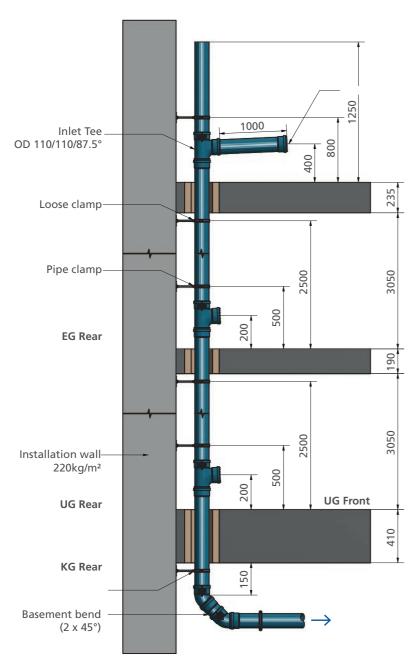
Together with Terrain Q it is essential the system is installed to best practice methods including the right sound dampening bracketry, fire protection and insulation. For full guidelines please refer to the installation section.

Airborne noise

Structure-borne noise

Terrain Q Technical Manual 2021 Terrain Q Technical Manual 2021

10 Terrain Q Technical Manual 2021

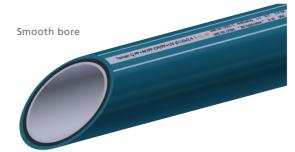

Acoustic testing

Terrain Q has been tested by the Fraunhofer Institute for Building Physics (IBP) in Stuttgart, Germany to the standard BS EN 14366 'Laboratory measurement of noise from wastewater installations.'

BS EN 14366 establishes methods for measuring sound arising from wastewater installations under laboratory conditions. Whilst this is a large-scale test set-up which reflects a wastewater system inside a building, it is a repeatable set-up to allow comparison of products, materials and system components and will not reflect the actual conditions for any individual project.

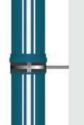
The first test conducted gives the value for installation sound pressure levels generated for the system as installed in the test set-up. This value is the contribution of the wastewater running through the pipes towards the overall noise from the building services.

Using a series of specified test points, frequency spectra for airborne and structure-borne sound are determined individually to help the consultant address specific requirements for the building.

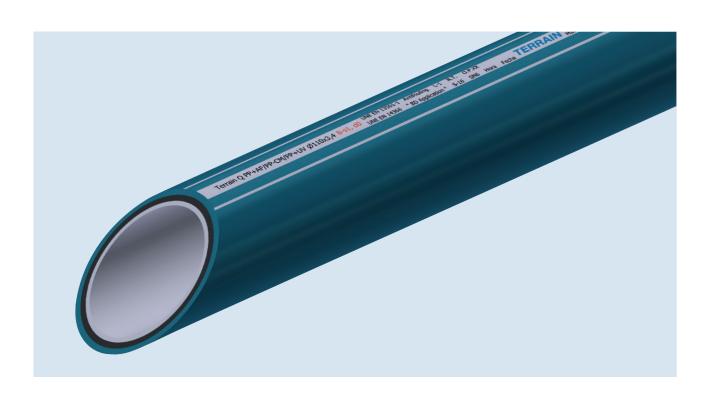


System design

Design of all sanitary pipework should be carried out in accordance with EN 12056 Parts 1, 2 and 5 which covers all aspects of sanitary pipework design and installation. To improve the acoustic performance of the drainage system, the system design should seek to minimise turbulence and also the creation of bubbles which impact on the pipe wall.


Take care with the following:

- To optimise the flow of wastewater, use smooth wall pipes.
- Avoid sudden changes in speed of wastewater i.e. rapid changes in pipe diameter.
- Avoid abrupt changes in direction to promote free flow - this can be achieved in the change from vertical to horizontal by using 2 x 45° bends, creating a 200mm long radius bend.
- Use sound-absorbing / dampening brackets which are dimensionally compatible with the acoustic pipe.
 These are full circle brackets with rubber inserts which insulate the system from structure-borne sound.
 (Note: Insert strips of soft PVC are not acceptable).
- Sound dampening brackets should allow for the control of thermal movement.
- Avoid contact between the pipe and the building structure i.e. floor/wall/ceiling by installing an insulation layer in the penetration hole before 'making good' the hole.



4. **Terrain Q Pipe and Fittings**

Terrain Q Fittings — Single socket pipe

	SINGLE SOCKET PIPE									
PRODUCT	CODE	DN mm	L mm	THICKNESS mm		D mm	WEIGHT Kg/un.			
« 	700P.40.30B	40	3000	1.8	45	55	0.710			
+	700P.50.30B	50	3000	1.8	47	63	0.899			
e e	700P.75.30B	75	3000	1.9	53	89	1.448			
_	700P.110.30B	110	3000	2.7	62	128	3.095			
	700P.160.30B	160	3000	3.9	77	184	6.629			
DN →	700P.200.30B	200	3000	4.9	122	226	10.630			

Terrain Q Fittings — Double depth socket
Slip coupler
Double socket

DOUBLE DEPTH SOCKET									
PRODUCT	CODE	LENGTH mm	HEIGHT mm	WIDTH mm	WEIGHT Kg/un.				
	711P.50B	63	174	63	0.07				
	711P.110B	127	243	127	0.37				

SLIP COUPLER									
PRODUCT		CODE	DN mm	L mm	WEIGHT Kg/un.				
		711P.S.40B	40	96	0.04				
		711P.S.50B	50	93	0.05				
		711P.S.75B	75	103	0.13				
		711P.S.110B	110	145	0.28				
	DN	711P.S.160B	160	180	0.68				
		711P.S.200B	200	240	1.50				

DOUBLE SOCKET									
PRODUCT	CODE	DN mm	L mm	WEIGHT Kg/un.					
	710P.40B	40	92	0.04					
	710P.50B	50	94	0.05					
	710P.75B	75	105	0.09					
	710P.110B	110	145	0.28					
DN	710P.160B	160	180	0.68					
	710P.200B	200	240	1.50					

SECTION 4 TERRAIN Q PIPE 8 FITTINGS

PIPES
DOUBLE DEPTH
SOCKET
SLIP COUPLER
DOUBLE SOCKET

BENDS
DOUBLE SOCKET

ACCESS PIPE REDUCERS

> RNER, SINGLE 8 DOUBLE BRANCH OSSED PIPE CONNECTOR

Terrain Q Technical Manual 2021

Terrain Q Fittings – Bends

	BEI	NDS				
PRODUCT	CODE	DN mm	L mm	Z1 mm	Z2 mm	WEIGHT Kg/un.
15° Bend	707P.110.165B	110	80	13	13	0.28
30° Bend	707P.110.150B	110	88	21	20	0.28
45° Bend	707P.40.135B	40	57	13	14	0.03
450	707P.50.135B	50	63	15	16	0.04
	707P.75.135B	75	75	21	21	0.13
- 1 N T T T T T T T T T T T T T T T T T T	707P.110.135B	110	96	29	29	0.30
DN	707P.160.135B	160	122	37	41	0.84
	707P.200.135B	200	159	41	52	1.85
87° Bend	707P.40.92B	40	68	24	25	0.04
Z_{2}	707P.50.92B	50	78	29	30	0.05
	707P.75.92B	75	97	42	42	0.15
	707P.110.92B	110	128	60	60	0.30
DN	707P.160.92B	160	169	84	87	0.98
DIN	707P.200.92B	200	230	106	115	2.36

Terrain Q Fittings — Double socket bend

DOUBLE SOCKET BEND							
PRODUCT	CODE	DN mm		Z1 mm	Z2 mm	WEIGHT Kg/un.	
45° Bend	701P.110.135B	110	97.8	32.8	32.8	0.33	
87.5° Bend	701P.110.92B	110	128	53	53	0.40	

SECTION 4
TERRAIN Q
PIPE 8
FITTINGS

PIPES

DOUBLE DEPTH

SOCKET

SLIP COUPLER

DOUBLE SOCKET

BENDS
DOUBLE SOCKET

ACCESS PIPE REDUCERS

ORNER, SINGL & DOUBLE BRANCH BOSSED PIPE CONNECTOR

Terrain Q Technical Manual 2021

Terrain Q Fittings — Single branch
Single reducing branch

	SINGLE	BRANCH					
PRODUCT	CODE	DN mm	L mm	Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.
45° Branch	704P.40.135B	40	111	13	54	54	0.08
450	704P.50.135B	50	129	15	66	66	0.11
	704P.75.135B	75	173	21	98	98	0.28
	704P.110.135B	110	240	29	144	144	0.54
	704P.160.135B	160	329	35	209	209	1.83
DN	704P.200.135B	200	416	52	240	240	4.00
87.5° Branch	704P.40.92B	40	94	24	25	25	0.07
Ø.50	704P.50.92B	50	108	29	30	30	0.10
	704P.75.92B	75	142	42	45	45	0.23
Z ₃	704P.110.92B	110	195	61	67	67	0.40
	704P.160.92B	160	310	115	118	118	1.62
DN	704P.200.92B	200	388	140	127	126	3.80

	SINGLE REDUCING BRANCH							
P	PRODUCT	CODE	DN mm	L mm	Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.
45° Branch	450	704P.7550.135B	75 - 50	138	3	80	84	0.20
		704P.11050.135B	110 - 50	153	-13	99	109	0.38
		704P.11075.135B	110 - 75	189	5	117	123	0.48
	13	704P.160110.135B	160 - 110	261	2	174	184	1.31
	DN	704P.200160.135B	200 - 160	360	13	229	253	3.23
87.5° Branch	\$750	704P.11050.92B	110 - 50	132	30	34	61	0.30
		704P.11075.92B	110 - 75	158	43	48	63	0.42
	DN	704P.160110.92B	160 - 110	261	81	95	107	1.21

Terrain Q Fittings – Fully socketed branch Double equal branch

FULLY SOCKETED BRANCH									
PRODUCT	CODE	DN mm	L mm	Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.		
45° Branch	704E.110.135B	110	311	33	148	148	0.73		

DOUBLE EQ	UAL BRANCH						
PRODUCT	CODE	DN mm	L mm	Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.
45° Branch	706P.110.135B	110	243	29	147	145	0.89
87.5° Branch	706P.110.90B	110	196	69	60	96	0.64

SECTION 4
TERRAIN Q
PIPE 8
FITTINGS

PIPES

DOUBLE DEPTH

SOCKET

SLIP COUPLER

DOUBLE SOCKET

BENDS
DOUBLE SOCKET
BEND

ACCESS PIPE REDUCERS

> RNER, SINGLE & DOUBLE BRANCH OSSED PIPE CONNECTOR

Terrain Q Fittings – Access pipe with cap Eccentric reducer

	ACCESS	PIPE WITH	CAP				
PRODUCT	CODE	DN mm	L mm	Z1 mm	Z2 mm	B mm	WEIGHT Kg/un.
	738P.50.90B	50	116	68	33	63	0.09
	738P.75.90B	75	156	102	52	94	0.25
	738P.110.90B	110	205	144	76	138	0.62
DN	738P.160.90B	160	244	168	92	213	1.14
<u> </u>	738P.200.90B						0.37

		ECCEN	ITRIC REDUCE	R			
PF	RODUCT	CODE	DN1 mm	DN2 mm		Z1 mm	WEIGHT Kg/un.
	723P.5040B 723P.7550B 723P.11050B 723P.11075B 723P.160110B	723P.5040B	50	40	65	20	0.05
		723P.7550B	75	50	79	31	0.09
		723P.11050B	110	50	113	47	0.19
		723P.11075B	110	75	99	32	0.20
		723P.160110B	160	110	124	39	0.51
		723P.200160B	200	160	171	47	1.31

Terrain Q Fittings – Short eccentric reducer Socket plug

	SHORT ECCENTRIC REDUCER PRODUCT CODE DN1 mm DN2 mm L mm WEIGHT Kg/un. 724P.7550B 75 50 55 0.05 724P.11075B 110 75 62 0.14				
PRODUCT	CODE				
Dn ₂	724P.7550B	75	50	55	0.05
Dn ₁	724P.11075B	110	75	62	0.14

	SOCKI	ET PLUG		
PRODUCT	CODE	DN1 mm		WEIGHT Kg/un.
	730P.40B	40	40	0.02
	730P.50B	50	44	0.02
	730P.75B	75	51	0.06
DN	730P.110B	110	62	0.14
	730P.160B	160	92	0.36
	730P.200B	200	122	0.85

SECTION 4
TERRAIN Q
PIPE 8
FITTINGS

PIPES

DOUBLE DEPTH
SOCKET

SLIP COUPLER

DOUBLE SOCKET

BENDS
DOUBLE SOCKET
BEND

ACCESS PIPE
REDUCERS

CORNER, SINGLE

8 DOUBLE

BRANCH

BOSSED PIPE

CONNECTOR

MANIFOLD

PVC Fittings to complement the system

Terrain Q Fittings — Corner boss branch

Double branch

Single branch spigot outlet

CORNER BOSS BRAN	CH - spigot outle	t, 1 boss h	orn, 2 wa	ste socket	S		
PRODUCT	CODE	SIZE mm	ANGLE	A mm	Z1 mm	Z2 mm	WEIGHT Kg/un.
Z ₂	706P.490.12B	110	92.5°	120	83	59	0.87

DOUBLE B	DOUBLE BRANCH - spigot outlet, 4 boss horns														
PRODUCT	CODE	SIZE mm	ANGLE	A mm	B mm	Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.						
Z ₃ A B Z ₂	706P.104.92B	110	92.5°	75	128	203	96	50	1.3						

	SINGLE BRA	ANCH - spigot o	utlet, 5	boss hor	ns				
PRODUCT		CODE	SIZE mm	ANGLE		Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.
Z ₁ A		704P.104.92B	110	92.5°	74	103	96	50	0.8

Terrain Q Fittings – Four way bossed pipe connector Universal soil manifold

FOUR WA	AY BOSSED PI	PE CONNEC	TOR			
PRODUCT	CODE	SIZE mm	Z1 mm	Z2 mm	Z3 mm	WEIGHT Kg/un.
$\begin{array}{c c} \hline z_3 & \\ \hline z_1 & \\ \hline \end{array}$	720P.412.2B	110/40	30	56	30	0.4

UNIVERSAL SOIL MANIFOLD - for solvent waste connections														
PRODUCT	CODE	SIZE mm	L1 mm	L2 mm	L3 mm	L4 mm	Z1 mm	WEIGHT Kg/un.						
$\begin{array}{c c} L_3 \\ 98 \\ \hline \end{array}$	719P.412.15B	110	228	189	199	217	105	0.69						

For connection of BS 5254/BS 5255 40mm waste pipes at floor level. Incorporates 4 inlets to accept 40mm waste pipes without need for adaptors. Use with Swivel Elbow or Swept Bend.

SECTION 4
TERRAIN Q
PIPE 8
FITTINGS

PIPES

DOUBLE DEPTH
SOCKET

SLIP COUPLER

DOUBLE SOCKET

BENDS

DOUBLE SOCKET

BEND

RRANCHES

ACCESS PIPE
REDUCERS
SOCKET PLUG

RNER, SINGLE 8 UBLE BRANCH BOSSED PIPE CONNECTOR SOIL MANIFOLD

Terrain Q Technical Manual 2021

5. Chemical Resistance

The use of thermoplastic pipe systems within the commercial market is now widespread. Thermoplastics have replaced traditional materials such as steel, ductile iron and copper. Because of this diversity of use, it is essential that the most suitable plastic material is matched to its proposed application.

This section will provide a guide to compatible material selection. The information within this section has been collated from tests carried out by both national and international standards organisations (ISO/TR10358:1993) as well as tests performed by independent test houses.

The tests were based on the use of pure chemicals. For mixed chemicals, we would advise that pilot tests should be undertaken in order to ascertain the resistance of the material under these circumstances.

SEALS AND SEAT MATERIALS

The working life of seals and seat materials is often different from that of the pipe system and greatly dependent on the working conditions involved.

Tables 5.01 and 5.02 outline their resistance.

SEAL AND S	EAT MATERIAL
MATERIAL TYPE	RESISTANCE
EDPM-Ethylene Propylene Rubber	Satisfactory resistance to most aggressive chemicals, not suitable for oils or fat
FPM-Fluorine Rubber	The most resistant of the elastomers to solvents
NBR-Nitrile Rubber	Not resistant to oxidising agents, but resists petrol and oils
PTFE-Polytetrafluoroethylene	Resists all the chemicals shown in tables

Table 5.01

TERMINOLOGY FOR CHE	MICAL RESISTANCE TABLES
SYMBOL/TERM	DESCRIPTION
1	Resistant
0	Conditionally resistant
×	Not recommended
-	No test data available
Technical grade	Technically pure
Saturated	Media has reached its maximum absorption in water at ambient temperature, which is the point where there can be no further absorption
Aqueous	A solution below maximum absorption, expressed as a percentage (%) of saturation (concentration)
Suspension	Insoluble or partially soluble solid carried in an aqueous base normally prepared at ambient temperature
Commercial Proprietary Industrial	Self explanatory, grades of chemical named brands in general use

Table 5.02

Chemical resistance – table 5.03

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERIA	ΑL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		_		YLENE		EPDM				PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	120
Acetaldehyde	40% aqueous solution	0	×	-	×	-	-	1	✓	0	√	0	0	✓	0	0	✓	0	-	-
Acetaldehyde	Technically pure	×	-	-	×	-	-	1	0	-	0	×	-	✓	0	×	0	×	-	-
Acetic acid	50% Aqueous	✓	✓	0	×	-	-	1	✓	✓	1	√	✓	✓	0	-	0	-	-	-
Acetic acid	Technically pure glacial	0	×	-	×	-	-	1	✓	0	1	✓	0	✓	0	-	×	-	-	-
Acetic acid anhydride	Technically pure	×	-	-	×	-	-	1	0	-	1	-	-	0	-	-	×	-	-	-
Acetic acid ethylester		×	-	-	×	-	-	1	-	-	1	-	-	✓	-	-	0	-	-	-
Acetic acid isobutyl ester	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	✓	-	-	×	-	-	-
Acetone	Up to 10% aqueous	×	-	-	0	-	-	1	/	1	1	✓	1	✓	/	✓	0	×	-	-
Acetone	Technically pure	×	-	-	×	-	-	1	✓	/	1	/	-	/	✓	/	×	-	-	-
Acetonitrile	100%	×	-	-	×	-	-	0	-	-	0	-	-	0	-	-	×	-	-	-
Acetophenone	100%	×	-	-	×	-	-	0	-	-	0	-	-	✓	-	-	×	-	-	-
Acrylic acid methyl ester	Technically pure	×	-	-	×	-	-	0	-	-	×	-	-	0	-	-	-	-	-	-
Acrylicethyl	Technically pure	×	-	-	×	-	-	0	-	-	×	-	-	0	-	-	×	-	-	-
Acrylonitrile	Technically pure	×	-	-	×	-	-	1	/	/	1	-	-	/	/	0	0	×	-	-
Adipic acid	Saturated, aqueous	✓	/	×	×	-	-	1	/	/	1	1	-	/	/	✓	/	/	-	-
Allyl alcohol	96%	0	×	-	×	-	-	1	/	/	1	0	-	/	/	0	0	-	-	-
Ammonia	Gaseous technically pure	✓	/	✓	×	-	-	1	/	/	1	/	-	/	-	-	/	-	-	-
Ammonium acetate	Aqueous, all	✓	/	0	0	-	-	1	/	/	1	√	1	/	/	✓	/	√	-	-
Ammoniumpersulphate		✓	/	0	-	-	-	1	-	-	0	-	-	✓	-	-	/	-	-	-
Ammonum salts, aqueous inorganic	Saturated	✓	/	/	-	-	-	1	/	/	1	/	-	/	/	/	/	/	-	-
Amyl acetate	Technically pure	×	-	-	×	-	-	1	/	/	0	×	-	0	-	-	×	-	-	-
Amyl alcohol	Technically pure	✓	√	0	×	-	-	1	/	1	1	√	-	/	/	/	0	-	-	-
Aniline	Technically pure	×	-	-	×	_	-	1	0	-	1	0	-	/	/	/	0	0	-	-
Antimony trichloride	90% Aqueous	✓	✓	-	×	-	-	1	/	/	1	/	-	/	-	-	/	-	-	-
Aqua regia	Mixing ratio	/	0	_	×	_	-	×	_	_	×	_	_	×	_	_	0	_	_	_
Arsenic acid	80% Aqueous	/	/	0	/	/	/	/	/	/	/	/	_	/	/	√	/	/	/	-
Barium salts, aqueous inorganic	Saturated	√	√	/	✓	-	-	1	✓	/	1	1	-	/	√	√	√	1	/	-
Beer	Usual commercial	✓	-	-	/	-	-	/	-	-	/	-	-	-	-	-	/	-	-	-
Benzaldehyde	Saturated, aqueous	×	-	-	×	-	-	1	√	0	1	-	-	/	/	0	/	1	-	-
Benzene	Technically pure	×	-	-	×	-	-	0	0	-	0	-	-	×	_	-	/	-	-	-
Benzene sulfonic acid	Technically pure	√	_	_	_	_	_	/	/	0	1	0	_	/	/	0	/	_	_	_

KEY: – NO DATA $\,\,$ × NOT RECOMMENDED $\,$ O CONDITIONALLY RESISTANT $\,\,$ $\,$ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERI <i>A</i>	ΑL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLY	PROP	YLENE		EPDN	1		FF	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	120
Benzine (Gasoline)	Free of lead and aromatic compounds	1	✓	-	×	-	-	1	✓	-	0	-	-	×	-	-	✓	-	-	-
Benzoic acid	Aqueous, all	1	✓	0	✓	1	-	1	✓	✓	1	✓	1	1	✓	-	✓	✓	0	-
Benzyl alcohol	Technically pure	0	-	-	×	-	-	1	✓	0	1	0	-	1	✓	0	1	-	-	-
Beryllium salts, aqueous, inorganic		1	1	✓	-	-	-	1	1	✓	1	1	-	1	✓	✓	1	√	-	-
Borax	Aqueous, all	1	✓	0	1	✓	-	1	✓	✓	1	1	✓	1	✓	✓	✓	✓	-	-
Boric acid	Aqueous, all	1	✓	0	1	✓	✓	1	✓	✓	1	✓	1	1	✓	✓	1	✓	✓	-
Bromine water	Saturated, aqueous	1	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
Butadiene	Technically pure	1	-	-	×	-	-	0	-	-	0	-	-	×	-	-	1	-	-	-
Butane	Technically pure	1	-	-	1	-	-	1	-	-	1	-	-	×	-	-	1	-	-	-
Butanediol	10% Aqueous	1	0	-	×	-	-	1	1	1	1	1	-	1	✓	1	1	1	-	-
Butanol	Technically pure	/	1	0	×	-	-	1	1	1	1	0	-	1	✓	✓	1	×	-	-
Butyl acetate	Technically pure	×	-	-	×	-	-	1	-	-	0	-	-	1	×	-	0	-	-	-
Butyl phenol p-tertiary	Technically pure	0	×	-	×	-	-	0	-	-	1	-	-	×	-	-	0	-	-	-
Butylene glycol	Technically pure	1	✓	0	-	-	-	1	✓	✓	1	√	-	1	✓	✓	1	0	-	-
Butylene liquid	Technically pure	/	-	-	-	-	-	×	-	-	×	-	-	0	-	-	1	-	-	-
Butyric acid	Technically pure	1	-	-	×	-	-	1	-	-	1	-	-	0	-	-	0	-	-	-
Caesium salts, aqueous inorganic	<saturated acid<="" td=""><td>/</td><td>1</td><td>1</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td>1</td><td>1</td><td>/</td><td>-</td><td>1</td><td>/</td><td>✓</td><td>1</td><td>✓</td><td>-</td><td>-</td></saturated>	/	1	1	-	-	-	1	1	1	1	/	-	1	/	✓	1	✓	-	-
Cadmium salts, aqueous inorganic	<saturated acid<="" td=""><td>1</td><td>/</td><td>/</td><td>-</td><td>-</td><td>-</td><td>/</td><td>/</td><td>/</td><td>1</td><td>1</td><td>-</td><td>1</td><td>1</td><td>1</td><td>/</td><td>✓</td><td>-</td><td>-</td></saturated>	1	/	/	-	-	-	/	/	/	1	1	-	1	1	1	/	✓	-	-
Calcium acetate	Saturated	1	✓	1	-	-	-	1	✓	1	1	1	-	1	✓	✓	1	✓	-	-
Calcium hydroxide	Saturated aqueous	1	✓	/	-	-	-	1	1	1	1	1	-	1	✓	✓	1	✓	✓	-
Calcium lactate	Saturated	/	✓	-	-	-	-	1	✓	✓	1	1	-	1	✓	✓	1	1	-	-
Calcium salts, aqueous, inorganic	Saturated acid	/	1	✓	1	1	-	1	1	1	1	√	-	1	✓	✓	1	1	-	-
Carbon dioxide	Technically pure, anhydrous	/	✓	1	-	-	-	1	1	1	1	/	-	1	/	✓	1	✓	-	-
Carbon tetrachloride	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
Carbonic acid		1	✓	✓	-	-	-	1	1	1	1	1	-	1	✓	✓	1	/	-	-
Caro's acid		1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	/	-	-	-
Caustic potash solution (potassium hydroxide)	50% Aqueous	1	✓	0	-	-	-	1	✓	1	1	0	-	1	✓	✓	×	-	-	-
caustic soda solution	50% Aqueous	1	1	✓	-	-	-	1	✓	✓	1	0	-	1	✓	✓	×	-	-	-
Chloric acid	10% Aqueous	1	/	0	×	-	-	/	/	-	×	-	-	1	/	✓	/	/	-	-
Chloric acid	20% Aqueous	1	/	0	×	-	-	0	-	-	×	-	-	0	0	-	1	/	-	-
Chlorine	Moist, 97% gaseous	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-

KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Chemical resistance – table 5.05

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERIA	ΑL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLYI	PROP	YLENE		EPDM			FF	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	12
Chlorine	Liquid, technically pure, as double pipe system	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	0	-	-	-
Chlorine	Anhydrous, technically pure, as double pipe system	×	-	-	×	-	-	0	0	-	×	-	-	0	-	-	1	-	-	-
Chlorine water	Saturated	✓	✓	0	0	-	-	0	0	-	0	-	-	0	-	-	1	-	-	-
Chloroacetic acid, mono	50% Aqueous	/	1	-	×	-	-	1	✓	0	1	0	-	0	-	-	×	-	-	-
Chloroacetic acid, mono	Technically pure	/	1	0	×	-	-	/	✓	0	1	0	-	0	-	-	×	-	-	-
Chlorobenzene	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	×	-	-	-
Chloroethanol	Technically pure	×	-	-	×	-	-	1	✓	1	1	/	-	0	-	-	×	-	-	-
Chlorosulphonic acid	Technically pure	0	-	-	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	-
Chromic acid	Aqueous, all	0	0	-	×	-	-	0	-	-	0	-	-	-	-	-	1	0	-	-
Chromic acid + water + sulphuric acid	50g 15g 35g	1	1	0	×	-	-	×	-	-	×	-	-	0	0	-	1	-	-	-
Chromium (II) - salts, aqueous, inorganic	<saturated acid<="" td=""><td>✓</td><td>/</td><td>✓</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></saturated>	✓	/	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Compressed air, containing oil		×	-	-	×	-	-	/	/	-	0	-	-	×	-	-	✓	-	-	-
Copper salts, aqueous inorganic	<saturated acid<="" td=""><td>1</td><td>/</td><td>0</td><td>✓</td><td>1</td><td>1</td><td>1</td><td>✓</td><td>1</td><td>1</td><td>/</td><td>-</td><td>1</td><td>/</td><td>-</td><td>1</td><td>1</td><td>-</td><td>-</td></saturated>	1	/	0	✓	1	1	1	✓	1	1	/	-	1	/	-	1	1	-	-
Cresol	Cold saturated aqueous	0	-	-	×	-	-	1	✓	0	1	-	-	0	-	-	1	-	-	-
Crotonic aldehyde	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	1	-	-	-
Cyclohexane	Technically pure	×	-	-	×	-	-	1	✓	✓	1	-	-	×	-	-	1	-	-	-
Cyclohexanol	Technically pure	1	✓	✓	×	-	-	1	✓	✓	1	0	-	×	-	-	1	-	-	-
Cyclohexanone	Technically pure	×	-	-	×	-	-	1	0	0	1	0	-	0	-	-	×	-	-	-
Dextrine	Usual commercial	/	1	✓	1	1	/	1	✓	1	1	-	-	1	/	/	1	1	-	-
Disobutyl ketone	Technically pure	×	-	-	×	-	-	1	0	-	1	-	-	0	0	-	×	-	-	-
Dibrombenzene	<saturated acid<="" td=""><td>×</td><td>-</td><td>-</td><td>×</td><td>-</td><td>-</td><td>0</td><td>-</td><td>-</td><td>0</td><td>-</td><td>-</td><td>0</td><td>-</td><td>-</td><td>/</td><td>-</td><td>-</td><td>-</td></saturated>	×	-	-	×	-	-	0	-	-	0	-	-	0	-	-	/	-	-	-
Dibutyl ether	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	1	-	-	-
Dibutyl phthalate	Technically pure	×	-	-	×	-	-	/	0	0	1	0	-	0	-	-	0	-	-	-
Dichloroacetic acid	50% Aqueous	/	/	0	×	-	-	/	/	0	1	0	-	1	/	/	0	×	-	-
Dichloroacetic acid	Technically pure	/	/	0	×	-	-	1	✓	0	1	0	-	1	/	/	0	-	-	-
Dichloroacetic acid methyl ester	Technically pure	×	-	-	×	-	-	/	/	/	1	/	-	1	/	0	×	-	-	-
Dichlorobenzene	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	0	-	-	1	-	-	-
Dichloroethylene	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	0	-	-	-
Diesel oil		/	/	_	×	_	_	/	_	_	0	_	_	×	_	_	/	_	_	_

KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERIA	ΑL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLY	PROP	LENE		EPDM			FF	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	12
Diethyl ether		×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	-
Diethylamine	Technically pure	-	-	-	×	-	-	1	-	-	1	-	-	0	-	-	×	-	-	-
Dimethyl formamide	Technically pure	×	-	-	×	-	-	1	✓	0	1	✓	-	0	-	-	×	-	-	-
Dimethylamine	Technically pure	×	-	-	×	-	-	1	-	-	×	-	-	0	-	-	×	-	-	-
Dioxane	Technically pure	×	-	-	×	-	-	1	1	✓	0	0	-	0	-	-	×	-	-	-
Ethanolamine	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	0	-	-	-
Ethyl alcohol (Ethnause)	Technically pure 96%	1	✓	0	×	-	-	1	1	✓	√	1	-	1	✓	✓	✓	0	-	-
Ethyl benzene	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	✓	-	-	-
Ethyl chloride (G)	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	0	-	-	-
Ethyl ether	Technically pure	×	-	-	×	-	-	1	-	-	0	-	-	×	-	-	×	-	-	-
Ethylene diamine	Technically pure	0	-	-	×	-	-	1	1	✓	1	1	-	1	-	-	0	×	-	-
Ethylene glycol	<50%	/	1	1	0	0	-	1	1	/	1	1	-	1	1	1	1	1	-	-
Ethylene glycol	Technically pure	1	1	1	×	-	-	1	1	1	1	1	-	1	1	1	1	1	-	-
Ethylenediamine -tetraacetic acid (EDTA)		-	-	-	-	-	-	1	-	-	1	-	-	1	-	-	-	-	-	-
Fluorine	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	-
Fluorosilic acid	32% Aqueous	/	1	1	-	-	-	1	1	/	1	1	-	1	-	-	0	-	-	-
Formaldehyde	40% Aqueous	1	1	-	-	-	-	1	1	1	1	-	-	1	1	1	1	✓	-	-
Formamide	Technically pure	×	-	-	×	-	-	1	1	✓	1	1	-	1	-	-	0	-	-	-
Formic acid	≥25%	1	✓	✓	-	-	-	1	1	✓	1	1	-	1	1	✓	-	-	-	-
Formic acid	Up to 50% aqueous	1	✓	0	0	-	-	1	1	✓	1	0	-	1	1	0	1	0	-	-
Formic acid	Technically pure	1	0	×	×	-	-	1	1	1	1	×	-	1	1	0	1	-	-	-
Frigen 12 (freon 12)	Technically pure	1	-	-	×	-	-	×	-	-	×	-	-	0	-	-	0	-	-	-
Fuel oil		1	1	-	×	-	-	1	-	-	0	-	-	×	-	-	1	-	-	-
Furfuryl alcohol	Technically pure	×	-	-	×	-	-	1	1	✓	/	0	-	0	-	-	×	-	-	-
Gelatin	Aqueous, all	/	1	-	1	1	√	1	✓	✓	1	1	-	1	✓	-	1	-	-	-
Glucose	Aqueous, all	1	/	0	-	-	-	1	/	/	1	/	-	/	1	/	/	✓	1	-
Glycerol	Technically pure	1	1	✓	-	-	-	1	/	/	1	/	1	/	0	0	/	0	-	-
Glycin	10% Aqueous	1	1	-	/	/	-	1	/	-	1	-	-	-	-	-	/	-	-	-
Glycolic acid	37% Aqueous	/	-	-	-	-	-	1	/	/	1	-	-	-	-	-	/	-	-	-
Heptane	Technically pure	/	/	_	×	-	-	1	/	_	0	-	-	×	_	_	/	_	-	_

KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Chemical resistance – table 5.07

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERIA	ΛL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLYI	PROP	YLENE		EPDM			FF	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	120
Hexane	Technically pure	1	✓	-	×	-	-	1	✓	-	0	-	-	×	-	-	/	-	-	-
Hydrazine hydrate	Aqueous	1	-	-	×	-	-	1	✓	1	1	✓	-	1	-	-	0	-	-	-
Hydrochloric acid	Up to 30% aqueous	1	✓	0	-	-	-	1	✓	1	1	0	-	1	✓	0	1	0	-	-
Hydrochloric acid	38% Aqueous	1	✓	0	×	-	-	1	✓	-	0	-	-	1	0	-	1	-	-	-
Hydrocyanic acid	Technically pure	1	✓	0	×	-	-	1	✓	✓	1	✓	-	1	0	-	1	-	-	-
Hydrofluoric acid	40%	1	0	0	×	-	-	1	✓	0	1	/	-	×	-	-	1	0	-	-
Hydrogen	Technically pure	1	1	/	✓	1	1	1	✓	1	1	1	×	1	1	-	1	✓	1	-
Hydrogen chloride	Technically pure gaseous	1	1	0	×	-	-	1	/	✓	1	1	-	1	/	/	1	/	-	-
Hydrogen peroxide	30% Aqueous	1	-	-	×	-	-	1	-	-	1	-	-	0	-	-	1	-	-	-
Hydrogen peroxide	90% Aqueous	1	-	-	×	-	-	0	-	-	-	-	-	×	-	-	0	-	-	-
Hydrogen sulphide	Saturated aqueous	1	1	0	-	-	-	1	/	1	1	/	-	1	×	-	1	/	-	-
Hydrogen sulphide	Technically pure	1	1	/	-	-	-	1	✓	0	1	1	-	1	×	-	/	0	-	-
Hydrquinone	30%	1	1	-	-	-	-	1	✓	1	1	1	-	1	-	-	-	-	-	-
Lodine-potassium iodide solution (Lugol's solution)		1	-	-	×	-	-	1	-	-	1	-	-	1	-	-	1	-	-	-
Iron salts, aqueous inorganic	≥Saturated acid	1	1	/	✓	-	-	1	✓	/	1	1	-	1	1	1	1	✓	1	-
Isooctane	Technically pure	1	-	-	×	-	-	1	-	-	1	-	-	-	-	-	1	-	-	-
Isopropyl alcohol (ESC)	Technically pure	1	1	0	-	-	-	1	/	0	1	0	-	1	1	-	1	-	-	-
Isopropyl ether	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	0	-	-	×	-	-	-
Lactic acid	10% Aqueous	1	0	×	✓	0	×	1	/	1	1	1	-	1	1	0	1	0	-	-
Lead acetate	Aqueous saturated	1	1	1	/	1	1	1	/	1	1	/	-	1	1	1	1	/	-	-
Lead salts, aqueous, inorganic	≥Saturated acid	1	/	/	-	-	-	1	/	/	1	1	-	1	/	/	1	/	-	-
Linsead oil	Technically pure	1	✓	0	-	-	-	1	✓	1	1	1	1	1	✓	1	1	1	-	-
Lithium salts, aqueous, inorganic	≥Saturated acid	1	✓	✓	-	-	-	1	✓	✓	1	1	-	1	✓	/	1	✓	-	-
Magnesium salts, aqueous inorganic	≥Saturated acid	1	1	0	-	-	-	1	/	1	1	/	1	1	1	1	1	/	1	-
Maleic acid	Cold saturated aqueous	1	1	0	-	-	-	1	✓	1	1	/	-	/	1	/	1	√	-	-
Mercury	Pure	1	/	/	1	-	-	1	/	/	1	1	-	1	/	/	/	1	-	-
Mercury salts	≥Saturated acid	1	1	0	-	-	-	1	/	/	1	1	-	1	/	/	/	1	-	-
Methane (natural gas)	Technically pure	1	-	-	√	-	-	1	-	-	1	-	-	-	-	-	1	-	-	-
Methanol	All	1	/	0	×	-	-	1	/	/	1	1	-	1	/	/	0	0	-	-
Methyl acetate	Technically pure	×	_	-	×	_	_	1	-	-	1	-	-	1	_	_	×	-	_	-

KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERI <i>A</i>	ΛL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLY	PROPY	LENE		EPDM			FF	M	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	12
Methyl amine	32% Aqueous	0	-	-	×	-	-	1	-	-	1	-	-	1	-	-	×	-	-	-
lethyl bromide	Technically pure	×	-	-	×	-	-	0	-	-	×	-	-	×	-	-	0	-	-	-
lethyl ethyl ketone	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	×	-	-	-
ethyl isobutyl ketone		×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	×	-	-	-
ethyl methacrylate		×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	×	-	-	-
ethyl phenyl(acetophenon)		×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	×	-	-	-
iilk		/	✓	1	/	1	/	1	1	1	1	1	1	-	-	-	✓	-	-	-
lineral water		1	✓	1	/	✓	√	1	✓	1	1	1	1	1	✓	✓	1	/	/	/
lixed acids nitric 15% hydrofluoric 15% sulphuric 18%	3 parts 1 part 2 parts	1	-	-	×	-	-	0	-	-	×	-	-	×	-	-	1	-	-	-
lixed acids sulphuric nitric water	10% 20% 70%	1	1	1	×	-	-	1	-	-	×	-	-	×	-	-	1	1	-	-
ixed acids sulphuric nitric water	50% 33% 17%	1	0	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
lixed acids sulphuric nitric water	50% 31% 19%	1	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
lixed acids sulphuric phosphoric water	30% 60% 10%	1	1	-	×	-	-	1	1	1	1	1	-	1	1	1	1	1	-	-
, N-Dimethylaniline	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	-	-	-	-
methylpyrrolidon		×	-	-	×	-	-	1	-	-	1	-	-	1	-	-	0	-	-	-
aphthalene	Technically pure	×	-	-	-	-	-	1	-	-	1	-	-	×	-	-	✓	-	-	-
ickel salts, aqueous organic	≥Saturated acid	/	1	0	-	-	-	1	1	/	1	1	-	1	/	/	/	1	-	-
itrating acid sulphuric acid nitric acid water	65% 20% 15%	1	0	-	-	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
litric acid	6.3% Aqueous	/	1	✓	-	-	-	/	✓	✓	1	0	-	1	0	-	✓	✓	-	-
tric acid	≥25%	1	✓	/	×	-	-	/	/	0	1	-	-	1	-	-	1	-	-	-
tric acid	65% Aqueous	0	0	×	×	-	-	0	×	-	×	-	-	×	-	-	1	×	-	-
tric acid	85%	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	/	-	-	-
itric acid	100%	×	_	_	×	-	-	×	_	_	×	-	-	×	_	_	×	-	-	_

KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Chemical resistance – table 5.09

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERIA	ΑL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLYI	PROP	YLENE		EPDM			FI	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	120
Nitrobenzene	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	0	-	-	1	-	-	-
Nitrotoluene (o-, m-, p-)	Technically pure	×	-	-	×	-	-	1	0	-	0	-	-	×	-	-	0	-	-	-
Nitrous acid		✓	✓	-	×	-	-	1	-	-	×	-	-	✓	-	-	1	-	-	-
Nitrous gases (nitric oxide)	Diluted, moist, anhydrous	/	-	-	×	-	-	0	-	-	0	-	-	0	-	-	1	-	-	-
Oleic	Technically pure	✓	✓	✓	×	-	-	1	✓	0	1	0	-	×	-	-	1	×	-	-
Oleum	10% SO3	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	-
Olive oil		✓	✓	1	×	-	-	1	✓	0	1	1	-	×	-	-	1	✓	-	-
Oxygen	Technically pure	1	✓	1	-	-	-	1	✓	0	1	0	-	/	1	1	1	/	✓	1
Ozone	Up to 2%, in air	/	-	-	×	-	-	0	-	-	0	-	-	0	-	-	1	-	-	-
Ozone	Cold saturated, aqueous	/	-	-	×	-	-	0	-	-	0	-	-	×	-	-	1	-	-	-
Palm oil, palm nut oil		1	-	-	-	-	-	1	-	-	1	-	-	×	-	-	1	-	-	-
Paraffin emulsions	Usual commercial, aqueous	/	-	-	-	-	-	1	-	-	1	-	-	×	-	-	1	-	-	-
Parraffin oil		✓	-	-	0	-	-	1	-	-	1	-	-	×	-	-	1	-	-	-
Perchlorid acid	10% Aqueous	✓	-	-	-	-	-	1	-	-	1	-	-	✓	-	-	1	-	-	-
Perchlorid acid	70% Aqueous	/	-	-	×	-	-	-	-	-	×	-	-	×	-	-	1	-	-	-
Perchloroethylene (tetrachlorethylene)	Technically pure	×	-	-	-	-	-	0	-	-	0	-	-	×	-	-	1	✓	-	-
Phenol	Up to10% aqueous	/	0	-	×	-	-	1	✓	0	1	✓	-	✓	1	0	1	✓	-	-
Phenol	Up to 90% aqueous	0	-	-	×	-	-	1	/	0	1	√	-	×	-	-	1	×	-	-
Phosgene	Gaseous technically pure	✓	0	0	×	-	-	0	-	-	0	-	-	✓	-	-	1	0	-	-
Phosgene	Liquid, technically pure	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
Phosphoric acid	85% Aqueous	/	1	1	-	-	-	1	✓	1	1	√	-	/	1	0	1	/	0	-
Phosphoric acid	Up to 95%	/	✓	-	×	-	-	1	/	-	1	/	-	0	-	-	1	0	-	-
Phosphorous chlorides - trichloride - pentachloride - oxichloride	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	-	-	-	×	-	-	-
Photographic developer	Usual commercial	/	✓	0	1	/	0	1	/	0	1	-	-	/	/	-	✓	-	-	-
Photographic emulsions		/	/	-	1	/	-	1	/	-	1	-	-	/	/	-	/	-	-	-
Photographic fixer	Usual commercial	/	✓	0	1	/	0	1	✓	-	1	-	-	/	/	-	/	-	-	-
Phthalic acid	Saturated, aqueous	/	0	×	×	-	-	1	/	/	1	1	-	/	0	-	×	-	-	-
Potassium hydroxide	50%	/	1	/	-	-	-	1	/	/	1	0	-	/	1	/	×	-	-	-

KEY: - NO DATA × NOT RECOMMENDED O CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERI <i>A</i>	ΑL°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLY	PROP	YLENE		EPDM			FF	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	120
Potassium aluminium salts, (alum), aqueous, inorganic	≤Saturated acid	1	✓	✓	-	-	-	1	✓	✓	1	1	-	1	1	✓	-	-	-	-
Potassium persulphate (potassium peroxidisulfate)	All, aqueous	1	✓	0	-	-	-	1	✓	✓	1	1	-	1	✓	-	✓	✓	-	-
Potassium hypochlorite		1	0	-	-	-	-	0	-	-	0	-	-	1	-	-	0	-	-	-
Propane	Technically pure, gaseous	1	✓	-	-	-	-	0	-	-	1	-	-	-	-	-	✓	-	-	-
Propane	Technically pure, liquid	1	✓	-	-	-	-	1	-	-	1	-	-	-	-	-	1	-	-	-
Propanol, n- and iso-	Technically pure	1	0	0	-	-	-	1	1	0	1	0	-	1	✓	0	✓	-	-	-
Propionic acid	50% Aqueous	1	✓	0	×	-	-	1	✓	1	1	1	-	1	✓	-	0	-	-	-
Propionic acid	Technically pure	1	0	-	×	-	-	1	0	0	1	0	-	1	0	-	✓	✓	-	-
Propylene glycol	<50%	1	✓	✓	-	-	-	1	✓	✓	1	√	-	1	✓	-	✓	0	-	-
Propylene glycol	Technically pure	1	✓	✓	✓	-	-	1	✓	✓	1	√	-	1	✓	✓	✓	✓	-	-
Pyridine	Technically pure	×	-	-	×	-	-	1	0	0	0	0	-	0	-	-	×	-	-	-
Salicylic acid	Saturated	1	✓	✓	-	-	-	1	✓	✓	1	/	-	1	✓	✓	1	-	-	-
Sea water		1	✓	0	✓	✓	✓	✓	✓	✓	1	√	✓	1	✓	1	1	✓	1	-
Silicic acid		1	✓	/	-	-	-	1	✓	✓	1	1	-	1	✓	1	1	-	-	-
Silicone oil		1	0	×	1	-	-	1	1	1	1	1	-	1	1	1	1	✓	-	-
Silver salts, aqueous, inorganic	≤Saturated acid	1	1	/	1	-	-	1	1	1	1	1	-	1	1	/	1	1	-	-
Sodium chlorite	Diluted, aqueous	1	-	-	-	-	-	0	-	-	0	-	-	0	-	-	/	-	-	-
Sodium hyprochlorite	12.5% Active chlorine, aqueous	1	✓	-	×	-	-	0	0	-	0	-	-	1	✓	-	0	-	-	-
Sodium persulphate	Cold saturated, aqueous	1	/	0	-	-	-	1	1	1	1	√	-	1	1	-	1	1	-	-
Sodium salts, aqueous, inorganic	≤Saturated acid	1	1	/	-	-	-	1	1	1	1	1	-	1	1	/	1	/	-	-
Stannous chloride	Cold saturated, aqueous	1	0	0	1	✓	-	1	✓	✓	1	1	-	1	0	×	1	/	-	-
Starch solution	Aqueous all	1	✓	/	1	/	-	1	✓	/	1	1	-	1	✓	/	1	/	-	-
Styrene		×	-	-	×	-	-	-	-	-	-	-	-	-	-	-	√	-	-	-
Succinic acid	Aqueous ,all	1	✓	✓	1	-	-	1	✓	✓	1	√	-	1	✓	/	1	1	-	-
Sulfuryl chloride	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	-	-	-	1	-	-	-
Sulphur dioxide	Technically pure, liquid	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	0	-	-	-
Sulphur dioxide	All, moist	1	✓	0	×	-	-	1	✓	✓	1	√	-	1	0	×	✓	×	-	-
Sulphuric acid	Saturated aqueous	1	✓	0	-	-	-	1	✓	/	1	1	-	1	×	-	1	0	-	-
Sulphuric acid	Up to 80% aqueous	1	/	/	×	-	-	1	/	0	1	0	-	0	0	×	/	0	-	-
Sulphuric acid	Up to 96% aqueous	1	/	0	×	-	-	×	-	-	×	-	-	×	-	-	/	/	-	-

KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

Chemical resistance – table 5.11

Terrain Q is made from PPR, please follow the column labeled Polypropylene.

										MA	TERIA	L°C								
CHEMICAL	CONCENTRATION		PVCu			ABS			PE		POLYI	PROP	YLENE		EPDM			FF	PM	
		20	40	60	20	40	60	20	40	60	20	60	100	20	40	60	20	60	100	120
Sulphuric acid	98%	/	0	-	×	-	-	×	-	-	×	-	-	×	-	-	0	-	-	-
Tannic acid	Aqueous all	1	-	-	-	-	-	1	1	1	1	1	-	-	-	-	1	-	-	-
Tetrachlorethylene (perchloroethylene)		×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	-	-	-
Tetrachloroethane	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	0	-	-	-
Tetraethylene lead	Technically pure	✓	-	-	×	-	-	1	-	-	1	-	-	0	-	-	1	-	-	-
Tetrahydrofurane	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	0	-	-	×	-	-	-
Tin salts, aqueous, inorganic	≤Saturated acid	/	1	1	-	-	-	1	✓	1	1	1	-	1	1	/	/	1	-	-
Toluene	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	/	-	-	-
Trichloromethane	100%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Trichloroacetic acid	50% Aqueous	/	0	-	×	-	-	1	/	1	1	0	-	0	-	-	×	-	-	-
Trichloroacetic acid	Technically pure	0	-	-	×	-	-	1	0	×	1	0	-	0	-	-	×	-	-	-
Trichloroethane	Technically pure	×	-	-	×	-	-	0	-	-	0	-	-	×	-	-	1	-	-	-
Trichloroethylene	Technically pure	×	-	-	×	-	-	×	-	-	0	-	-	×	-	-	/	-	-	-
Triethylamine	Technically pure	×	-	-	×	-	-	1	-	-	1	-	-	×	-	-	×	-	-	-
Trifluoroacetic acid	Up to 50%	×	-	-	×	-	-	1	-	-	1	-	-	0	-	-	×	-	-	-
Turpentine oil	Technically pure	/	0	-	×	-	-	0	0	-	×	-	-	×	-	-	/	/	-	-
Urea	Up to 30% aqueous	/	1	0	√	1	-	1	/	1	1	/	-	1	1	1	/	/	-	-
Urine		/	1	0	-	-	-	1	/	1	1	/	-	1	1	1	/	/	-	-
Vinyl acetate	Technically pure	×	-	-	×	-	-	1	/	-	1	0	-	/	-	-	×	-	-	-
Vinyl chloride	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	/	-	-	-
Waste gases, containing alkaline		/	1	1	-	-	-	1	/	1	1	1	-	1	/	/	/	/	×	-
Waste gases, containing hydrochloric acid	All	1	1	1	-	-	-	1	/	1	1	0	-	1	1	1	1	1	1	-
Waste gases, containing hydrogen fluoride	Traces	✓	✓	1	-	-	-	1	✓	1	1	1	-	0	0	0	1	1	-	-
Waste gases, containing nitrous gases	Traces	✓	✓	1	-	-	-	1	0	0	0	0	-	1	0	0	1	1	0	-
Waste gases, containing sulphur dioxide	Traces	0	1	-	-	-	-	1	/	-	1	-	-	1	/	1	1	1	1	-
Water, drinking, chlorinated	≤0.1ppm Chlorine	/	1	1	1	1	1	1	/	1	1	1	1	1	/	0	1	1	1	-
Water - distilled - deionised		1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
Xylene	Technically pure	×	-	-	×	-	-	×	-	-	×	-	-	×	-	-	1	×	-	-
Zinc salts, aqueous, inorganic	≤Saturated acid	1	✓	1	✓	-	-	1	1	1	1	1	-	1	/	1	1	1	-	-

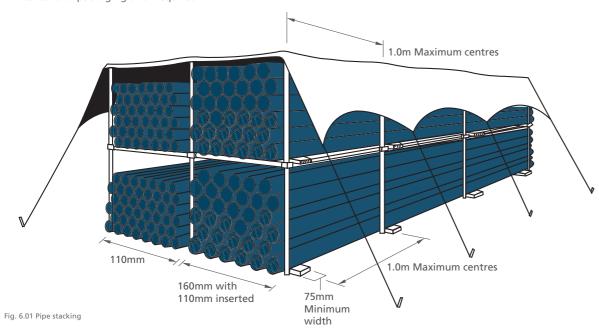
KEY: - NO DATA × NOT RECOMMENDED ○ CONDITIONALLY RESISTANT ✓ RESISTANT

The information in these tables has been supplied by other reputable sources and is to be used ONLY as a guide in selecting equipment for appropriate chemical compatibility. Before permanent installation, test the equipment with the chemicals and under the specific conditions of your application. Ratings of chemical behaviour listed in this chart apply to a 48-hr exposure period, we have no knowledge of possible effects beyond this period. We do not warrant (neither express or implied) that the information in this chart is accurate or complete or that any material is suitable for any purpose.

GOOD SITE PRACTICE

- Do not throw, drop pipes, or drag them along
- In case of mechanical handling, use protective slings and padded supports. Metal chains and hooks should not make contact with the pipe

ON-SITE STORAGE


- Stack pipe lengths
 - on a flat base
 - on level ground
 - or on 75mm x 75mm timber at 1m centers (fig 6.01)
- Provide side support with 75mm wide battens at 1m centres (Fig. 6.01)
- Maximum stack should not exceed 1.5m high
- Ideally, stacks should contain one diameter pipe size only. Where this is not possible, stack largest diameter pipes at base of stack. Small pipes may be nested inside larger pipes
- If stored in the open for long periods or exposed to strong sunlight, cover the stack with opaque sheeting
- Store fittings under cover. Do not remove from cartons or packaging until required

STORAGE IN HOT CLIMATES

- Ultra-violet light can affect pipes and fittings: pipe colour may change and rubber seals may be degraded
- Store accordingly:
 - store all materials in well-ventilated, shady conditions
 - do NOT expose to direct sunlight
 - keep fittings in original packaging until required
- Maximum stack (hot conditions): six layers high

SITE SAFETY

- The relevant regulations detailed in the Health & Safety at Work Act 1974, Construction Design and Management Regulations 2015, must be adhered
- MSDS data sheets are available on request

Terrain Q Technical Manual 2021

7. Installation

Design considerations

When designing a system, the following aspects must be considered:

VENTILATION

The discharge stack must be ventilated in order to prevent pressure building up within the system and drawing the water seals in the traps. Separate ventilation of branch pipes is required only if the length and slope of the branch exceeds the dimension stated in the regulations. Please refer to table 7.04.

In such cases, the branch pipe should be ventilated by a branch ventilating pipe or an anti-syphon trap should be fitted. The Automatic Air Admittance Valve reduces the number of stack ventilating pipes required to penetrate the roof in multi-installations, without affecting performance of the drainage system.

BRANCH CONNECTIONS

The distance between the centreline of the lowest branch connection to the discharge stack and the invert of the bend at the foot of the stack should be in accordance with the following:

- ≤3 storeys 450mm min.
- ≤5 storeys 750mm min.
- 5 storeys + Ground floor connections should discharge direct to drain or into their own stack.
- 20 storeys + Ground floor and first floor connections should discharge into their own stack.

A branch pipe should not discharge into a stack in a way which could cause crossflow into any other branch pipe.

WORKING TEMPERATURES

Terrain Q may be used to convey liquids with a maximum temperature of 80°C when subjected to continuous flow. Intermittent discharges of up to 97°C may occur providing they are of less than 2 minutes duration.

CHEMICAL DISCHARGES

Terrain Q is resistant to most commonly used acids and those that may be discharged to the public sewer system. The rubber seals, however, are less resistant and it is advised that before any chemicals are conveyed through the systems, checks are made to establish their effects on the product. Refer to BS CP 312 Part 1 Code of Practice for Plastic Pipework for further information.

ACCESS

Sufficient and suitable access must be provided to enable all pipework to be tested and maintained effectively. Access covers, plugs or caps should be installed in positions to facilitate use of testing equipment and removal of blockages.

FIRE SPREAD

In large commercial or housing developments, compartmentation may be required by local building regulations. In such cases, any penetrations by sanitary pipework must be suitably fire stopped. Suitable measures include the containment of pipes from floor to ceiling in a fire resistant enclosure (with appropriate fire rating).

PIPE SUPPORT

Pipes must be adequately supported when installed vertically or horizontally (to falls).

General notes Alternatives 150.4 153.4.3 131.4 See Note 2 for 700P.110.30B 149.18.22 maximum distance_ See Note 3 Lavatory 100.3.30G 707P.110.135B 100.4.40 _ 707P.4.92B Expansion - 143.4/140.4 Soil and Waste Manifold Access 700P.40.30B 137.4 457.15W Rath Variable **Branch** See Note 6 706P.490.12B/ 100.4.40 See Note 4 704P.104.92B 719P.412.15B 719P.412.15B W.C. Pan BS5503 -498.4.90 Shower Tray See Note 1 for 700P.40.30B 483.15 or 431.15 maximum distance See Note 8 See Note 5 for maximum distance _See Note 1 for Back to back W.C. connections maximum distance -704P.104.92B 730P.110B 117.15.90G Alternative pipe route 738P.110.90B See Note 7 for 720P.412.2B maximum distance 704P.110.135B 707P.110.135B

NOTE: For buried drain details see other supporting documents

- **1. Gradients** Gradients should be between 1 and 5 degrees with a maximum distance of 3 metres. Distances over 3 metres are prone to blockage and should therefore be provided with access.
- **2. Venting** Maximum distance from stack for unvented system is 1.7 metres according to angle (see diagram for details). Above 1.7 metres, venting is required, and if this is impractical then a suitable re-sealing trap should be used.
- **3a. Air Admittance Valves** Air admittance valves may be fitted as an alternative to an open vent, however an open vent must be allowed at the head of a drain.
- **3b. Terrain Pleura** Terrain Pleura may be fitted as an alternative ventilation system. The Pleura 50 protects the fixtures connected to the branch drain with the Pleura 100 and the Terrain P.A.P.A.® together protecting the stack

against positive and negative air pressures. An open vent must be allowed at the head of the drain.

- **4. W.C. Connectors** W.C. connectors shown are to horizontal outlet pans (to BSEN997).
- **5. Stub Stacks** Stub stacks are used to connect one set of domestic appliances. A to be maximum of 2.0 metres and B (to crown of W.C. trap) to be maximum of 1.5 metres.
- **6. Connection Zones** Although four bosses have been provided on branches and access pipes certain connections are not allowed under EN 12056.
- **7. Distances** Distance must be a minimum of 450mm for single houses up to 3 storeys, or a minimum of 750mm up to 5 storeys, or one storey height for 5 storey buildings and over. Minimum radius of bend 200mm or alternative of 2 No.45 degree bends.

Terrain Q Technical Manual 2021 Terrain Q Technical Manual 2021

SECTION 7
INSTALLATION
DESIGN
CONSIDERATIONS
GENERAL NOTES

PP THERMAL EXPANSION VERTICAL PUSH-FIT SYSTEM

> ORIZONTAL XPANSION SYSTEM

ACOUSTIC
INSTALLATION
GUIDANCE
MANAGING

BRANCH PE SIZING

SITE WORK
ISTRUCTIONS
NFORMATION
TABLES

Thermal expansion - polypropylene

Terrain Q, a polypropylene drainage system, expands and contracts with changes in temperature, both ambient temperature and from the temperature of the waste discharge through the pipework. This guide describes the principles of thermal movement allowance and provides advice covering assembly and jointing techniques.

The advice and guidance is based on typical situations only. For further information contact the Polypipe Technical Department. Terrain Q offers substantial durability against the flow of hot water. A waste pipe with no mechanical load will tolerate temperatures of up to 80°C and up to 97°C is permissible for a maximum of two minutes. Thermal movement MUST always be accounted for (see the following information).

CALCULATING THERMAL MOVEMENT

Terrain Q has a coefficient of expansion of 0.08 (mm/m/°C), the design and installation of above ground drainage systems must be able to accommodate for this. Calculate the thermal movement on straight lengths between anchors using:

$\Delta L = L\Delta T$

Where:

 ΔL = Expansion (mm) or contraction (-mm)

= Co-efficient of linear expansion (mm/m/°C) Terrain Q 0.08

L = Total length of the pipe between anchor points (m)

 ΔT = Temperature difference (°C)

Note: For waste discharges ΔT should always be calculated from 0°C so if the max. water temperature is 60°C, ΔT is 60°C.

Example 1 - Typical vertical stack

Typical vertical stack A 10 story foul drainage stack will collect and convey domestic waste (assumed temperature 60°C) and connect directly to drain. Each story is 3m high.

 $\Delta L = L \Delta T$

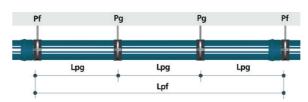
 $\Delta T = 0.08 \times 3.0 \times 60 = 14.4$ mm thermal movement per floor.

Example 2 – Typical suspended pipe run

A 20m high-level lateral run has been designed in an open car park area. The maximum length between fixed points should be 3m. The assumed temperature of the waste fluid is 50°C

 $\Delta L = L \Delta T$

 $\Delta T = 0.08 \times 3.0 \times 50 = 12$ mm thermal movement between anchor points.

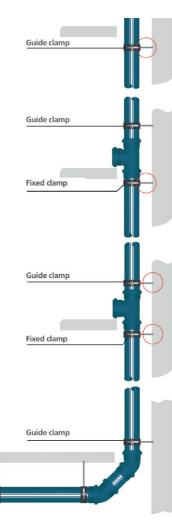

Vertical push-fit system

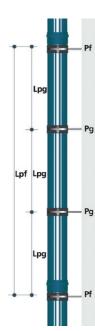
DISTANCE BETWEEN HORIZONTAL BRACKETS

The brackets settle in such a way that the distance between them never exceed the recommended distance, as shown below in table 7.01

DISTANCE	BETWEEN HORIZON	ITAL BRACKETS
DIAMETER (mm)	DISTANCE BETWEEN HORIZONTAL BRACKETS (Lpg)	DISTANCE BETWEEN BRACKETS (Lpf)
40	0.50	
50	0.50	The maximum
75	0.80	distance between
110	1.10	fixed points should
160	1.60	not exceed sm
200	1.70	

Table 7.01




DISTANCE BETWEEN VERTICAL BRACKETS

The brackets settle in such a way that the distance between them never exceed the recommended distance, as shown below in table 7.02

DISTANG	CE BETWEEN VERTIC	AL BRACKETS
DIAMETER (mm)	DISTANCE BETWEEN VERTICAL BRACKETS (Lpg)	DISTANCE BETWEEN BRACKETS (Lpf)
40	1.20	
50	1.50	The maximum
75	2.00	distance between
110	2.00	fixed points should not exceed 3m
160	2.00	not exceed 3m
200	2.00	

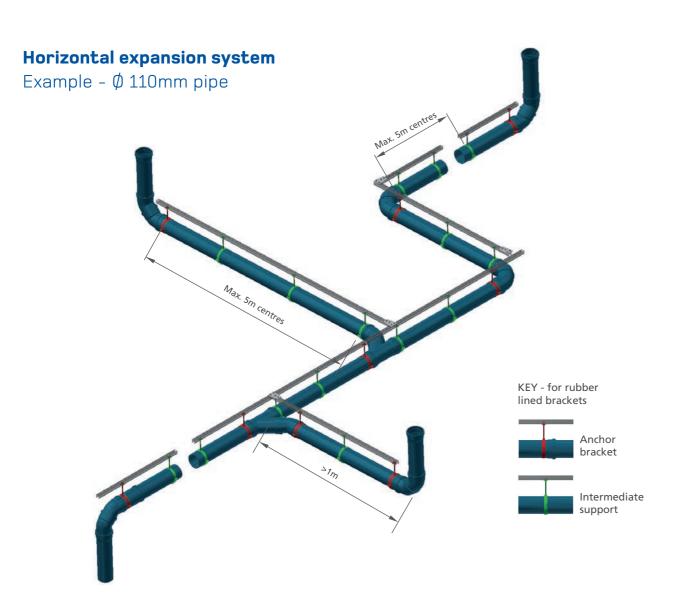
Table 7.02

THERMAL EXPANSION POLYPROPYLENE

SECTION 7

DESIGN DASIDERATION

HORIZONTAL EXPANSION SYSTEM


ACOUSTIC
INSTALLATION
GUIDANCE
MANAGING
SOUNDS

BRANCH PIPE SIZING

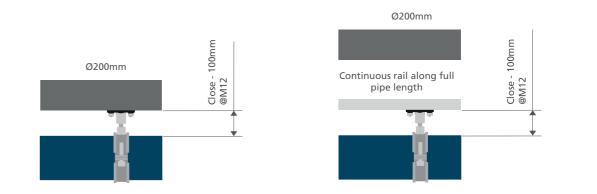
SITE WORK
NSTRUCTIONS
INFORMATION
TABLES

Terrain Q Technical Manual 2021 Terrain Q Technical Manual 2021

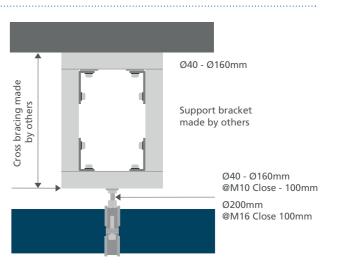
Terrain Q Technical Manual 2021

Bracketing a push-fit system

Terrain Q can be anchored from the slab or off a rail system.


Cross bracing must be used for drop rods longer than figures shown on the right

Rails are not supplied by Polypipe


RULINGS FOR ANCHOR BRACKETS IN A PUSH FIT SYSTEM

The movement in a push fit system is controlled by using fixed points every 3m.

- Pipe diameters up to 160mm M10 drop rods up to 100mm below slab or rail.
- Pipe diameters up to 160mm M10 drop rods with M10 cross brace up to 500mm below slab or rail.
- Pipe diameters up to 160mm where the vertical drop is greater than listed above use either the rail system or use Unistrut as a drop rod with a cross brace and an M10 connection to the bracket.
- Pipe diameters 200mm and above M16 drop rods up to 100mm below slab or rail.
- Pipe diameters 200mm and above where the vertical drop is greater than listed above use either the rail system or use Unistrut as a drop rod with a cross brace and an M16 connection to the bracket.

SECTION 7 INSTALLATION DESIGN CONSIDERATIONS GENERAL NOTES

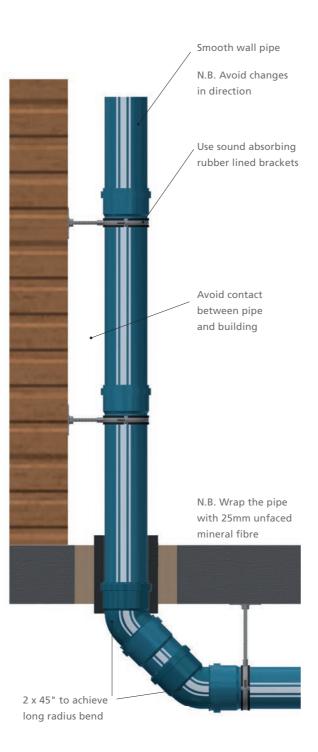
> PP THERMAL EXPANSION VERTICAL PUSH-FIT SYSTEM

HORIZONTAL EXPANSION SYSTEM

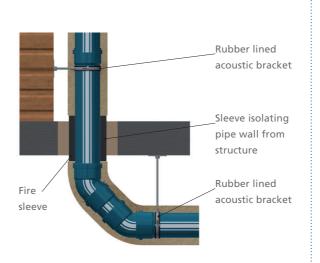
ACOUSTIC
INSTALLATION
GUIDANCE
MANAGING

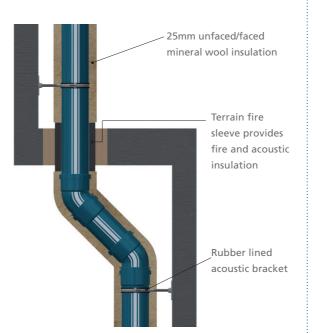
BRANCH PIPE SIZING

SITE WORK NSTRUCTIONS NFORMATION TABLES


Acoustic installation guidance

Installation of all sanitary pipework should be carried out in accordance with EN 12056 Parts 1, 2 and 5 which covers all aspects of sanitary pipework design and installation.


To improve the acoustic performance of the drainage system, the installation should seek to minimise turbulence and the creation of bubbles which impact on the pipe wall.

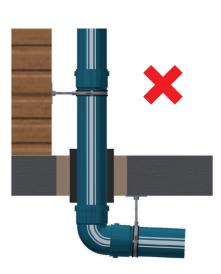

Take care with the following:

- Optimise the flow of wastewater use smooth wall pipes.
- Avoid sudden changes in speed of wastewater i.e. rapid changes in pipe diameter.
- Avoid abrupt changes in direction to promote free flow - this can be achieved in the change from vertical to horizontal by using 2 x 45° bends, creating a long radius bend
- Sound dampening bracket sounds allow for the control of thermal movement.
- Avoid contact between the pipe and the building structure i.e. floor / wall / ceiling by installing an insulation layer in the penetration hole before 'making good' the hole.

Managing sounds at changes of direction

Installation A - 2 x Bends 45°

This is **THE BEST** solution because:


- It allows for the greatest control of pressure in the system.
- The noise level is the lowest of all installation solutions.
- Adding a small section of pipe achieves a long radius bend.

Installation B - Bend 90°

This type of installation is ${\bf NOT}$ ${\bf RECOMMENDED}$ because:

- It allows pressure to build up in the stack.
- There is a high risk of siphonage
- There is a significant increase in sound.

SECTION 7
INSTALLATION
DESIGN
CONSIDERATIONS
GENERAL NOTES

EXPANSION
VERTICAL
PUSH-FIT
SYSTEM

ORIZONTAL XPANSION SYSTEM

ACOUSTIC STALLATION GUIDANCE MANAGING SOUNDS

> BRANCH PE SIZING

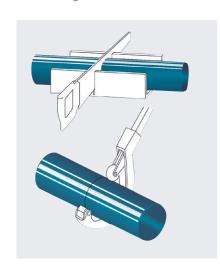
SITE WORK NSTRUCTIONS NFORMATION TABLES

For branch pipe sizing based on System III the following sizing charts should be used.

SIZING CHA	RT - UNVENTIL	ATED BRANCH	I DISCHARGE PI	PES, SYSTEM I	II	
APPLIANCE	DIAMETER DN	MIN. TRAP SEAL DEPTH mm	MAX. LENGTH (L) PIPE FROM TRAP OUTLET TO STACK m	PIPE GRADIENT	MAX. NO. OF BENDS	MAX. DROP (H) m
LIMI	TATIONS FOR UNVE	NTILATED BRANCH	DISCHARGE PIPES, S	SYSTEM III		
Washbasin, bidet (30mm diameter trap)	30	75	1.7	2.2(1)	0	0
Washbasin, bidet (30mm diameter trap)	30	75	1.1	4.4(1)	0	0
Washbasin, bidet (30mm diameter trap)	30	75	0.7	8.7(1)	0	0
Washbasin, bidet (30mm diameter trap)	40	75	3.0	1.8 to 4.4	2	0
Shower, bath	40	50	No Limit (2)	1.8 to 9.0	No Limit	1.5
Bowl urinal	40	75	3.0 (3)	1.8 to 9.0	No Limit (4)	1.5
Trough urinal	50	75	3.0 (3)	1.8 to 9.0	No Limit (4)	1.5
Slab urinal (3)	60	50	3.0 (3)	1.8 to 9.0	No Limit (4)	1.5
Kitchen sink (40mm diameter trap)	40	75	No Limit (2)	1.8 to 9.0	No Limit	1.5
Household dishwasher or washing machine	40	75	3.0	1.8 to 4.4	No Limit	1.5
WC with outlet up to 80mm (6)	75	50	No Limit	1.8 min	No Limit (4)	1.5
WC with outlet greater than 80mm (6)	100	50	No Limit	1.8 min	No Limit (4)	1.5
Food waste disposal (7)	40 min	75 (8)	3.0 (3)	13.5 min	No Limit (4)	1.5
Sanitary towel disposal unit	40 min	75 (8)	3.0 (3)	5.4 min	No Limit (4)	1.5
Floor drain	50	50	No Limit (3)	1.8 min	No Limit	1.5
Floor drain	50	50	No Limit (3)	1.8 min	No Limit	1.5
Floor drain	100	50	No Limit (3)	1.8 min	No Limit	1.5
4 basins	50	75	4.0	1.8 to 4.4	0	0
Bowl urinals (3)	50	75	No Limit (3)	1.8 to 1.9	No Limit (4)	1.5
Maximum of 8 WC's (9)	100	50	15.0	0.9 to 9.0	2	1.5
Up to 5 spray tap basins (9)	30 max	50	4.5 (3)	1.8 to 4.4	No Limit (4)	0

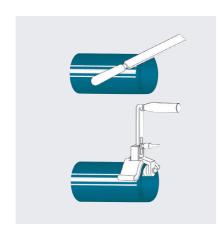
- (1) Steeper gradient permitted if pipe is less than maximum permitted length.
- (2) If length is greater than 3m noisy discharge may result with an increased risk of blockage. (7) Includes small potato-peeling machines.
- (3) Should be as short as possible to limit problems with deposition.
- (4) Sharp throated bends should be avoided.
- (5) For slab urinal for up to 7 persons. Longer slabs to have more than one outlet.
- (6) Swept-entry branches serving WC's.
- (8) Tubular not bottle or resealing traps.
- (9) Spray tap basins shall have flush-grated wastes without plugs.

VENTILATED DISCHARGE BRANCHES


Sizes and limitations upon the use of ventilated discharge branches are given in tables 7.03 and 7.04. Limitations given in the second table are simplifications, for further information see national and local regulations and practice.

SIZING CHART	Γ - VENTILATE	ED BRANCH [DISCHARGE PIPI	ES, SYSTEM II	I	
APPLIANCE	DIAMETER DN	MIN. TRAP SEAL DEPTH mm	MAX. LENGTH (L) PIPE FROM TRAP OUTLET TO STACK m	PIPE GRADIENT	MAX. NO. OF BENDS	MAX. DROP (H) m
LIMITAT	IONS FOR VENTIL	ATED BRANCH D	ISCHARGE PIPES, SY	STEM III		
Washbasin, bidet (30mm diameter trap)	30	75	3.0	1.8 min	2	3.0
Washbasin, bidet (30mm diameter trap)	40	75	3.0	1.8 min	No Limit	0
Shower, bath	40	50	No Limit (2)	1.8 min	No Limit	No Limit
Bowl urinal	40	75	3.0 (3)	1.8 min	No Limit (4)	3.0
Trough urinal	50	75	3.0 (3)	1.8 min	No Limit (4)	3.0
Slab urinal (3)	60	50	3.0 (3)	1.8 min	No Limit (4)	3.0
Kitchen sink (40mm diameter trap)	40	75	No Limit (2)	1.8 min	No Limit	No Limit
Household dishwasher or washing machine	40	75	No Limit (3)	1.8 min	No Limit	No Limit
WC with outlet up to 80mm (6) & (14)	75	50	No Limit	1.8 min	No Limit (4)	1.5
WC with outlet greater than 80mm (6) & (14)	100	50	No Limit	1.8 min	No Limit (4)	1.5
Food waste disposal (7)	40 min	75 (8)	3.0 (3)	13.5 min	No Limit (4)	3.0
Sanitary towel disposal unit	40 min	75 (8)	3.0 (3)	5.4 min	No Limit (4)	3.0
Bath drain, floor drain	50	50	No Limit (3)	1.8 min	No Limit	No Limit
Floor drain	70	50	No Limit (3)	1.8 min	No Limit	No Limit
Floor drain	100	50	No Limit (3)	1.8 min	No Limit	No Limit
5 basins (9)	50	75	7.0	1.8 to 4.4	(2)	0
10 basins (9) & (10)	50	75	10.0	1.8 to 1.9	No Limit	0
Bowl urinals (9) & (11)	50	70	No Limit (3)	1.8 min	No Limit (4)	No Limit
More than 8 WC's (6)	100	50	No Limit	0.9 min	No Limit	No Limit
Up to 5 spray tap basins (9)	30 max	50	No Limit (3)	1.8 to 4.4	No Limit (4)	0

- (1) For maximum distances from trap to vent (see Figure 8 of BS EN 1205-2:2000).
- (2) If length is greater than 3m noisy discharge may result with an increased risk of blockage.
- (3) Should be as short as possible to limit problems with deposition.
- (4) Sharp throated bends should be avoided.
- (5) For slab urinal for up to 7 persons. Longer slabs to have more than one outlet.
- (6) Swept-entry branches serving WC's.
- (7) Includes small potato-peeling machines.
- (8) Tubular not bottle or resealing traps.


- (9) See Figure 9 of BS EN 12056-2:2000).
- (10) Every basin shall be individually ventilated.
- (11) Any number.
- (12) Spray tap basins shall have flush-grated wastes without plugs.
- (13) The size of ventilating pipes to branches from appliances can be DN 25 but, if they are longer than 15m or contain more than five bends, a DN 30 pipe shall be used.
- (14) If the connection of the ventilating pipe is liable to blockage due to repeated splashing or submergence, it should be DN 50, up to 50mm above the spill-over of the appliance.

Ensure that Terrain Q is cut square to its axis and that all burrs are removed after cutting.

STEP 2

Chamfer the end of the pipe to prevent the ring seal being damaged or misplaced when the pipe is inserted into the socket. Fittings with spigot ends are moulded with a chamfer during manufacture.

STEP 3

Lubricate the spigot or ring seal with Terrain silicone grease.

STEP 4

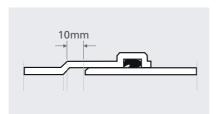
EXAMPLE - 10 STOREY BUILDING WITH:

2 WC

4 WHB 2 BATHS

2 SINKS

2 W/MC


On each floor

0.7 √95.4 .84 l/s

Domestic Building Use K = 0.7

See Table C and D for capacities of pipes.

Insert the pipe or fitting into the socket and then withdraw it by approximately 10mm to allow for expansion of the pipework.

2 x 1.5 = 3.0

4 x 0.3 = 1.2

2 x 1.3 = 2.6 2 x 1.3 = 2.6

2 x 0.6 = 1.2

10.6 x 9 = 95.4 DU

Information tables

Table A: Discharge units (DU) values

APPLIANCE	SYSTEM III DU I/s
Wash basin, bidet	0.3
Shower without plug	0.4
Shower with plug	1.3
Single urinal with cistern	0.4
Urinal with flushing valve	-
Slab urinal	0.2*
Bath	1.3
Kitchen sink	1.3
Dishwasher (household)	0.2
Washing machine up to 6kg	0.6
Washing machine up to 12Kg	1.2
WC with 4.0L cistern	**
WC with 6.0L cistern	1.2 to 1.7***
WC with 7.5L cistern	1.4 to 1.8***
WC with 9.0L cistern	1.6 to 2.0***
Floor gully DN 50	-
Floor gully DN 70	-
Floor gully DN 100	-

- *** Depending upon type (valid for WC's with siphon flush cistern only).

 Not used or no data.

Table B: Typical frequency factors (K)

TABLE B: FREQUENCY FACTORS				
USAGE OF APPLIANCE	K			
Intermittent use, e.g. in dwelling, guest house, office	0.5			
Frequent use, e.g. in hospital, school, restaurant, hotel	0.7			
Congested use, e.g. in toilets and/ or showers open to public	1.0			
Special use, e.g. laboratory	1.2			

FREQUENCY FACTOR (K)

Typical frequency factors associated with different usage of appliances Table B.

Calculation of flow rate

Waste water flow rate (Qww)

Qww is the expected flow rate of waste water in a part or in the whole drainage system where only domestic sanitary appliances are connected to the system

Qww = $K\sqrt{\Sigma}DU$ where:

Qww = Waste water flow rate (L/s)

= Frequency factor

 $\Sigma DU = Sum of discharge units.$

Table D: Stack with secondary venting

TABLE C: STACK WITH PRIMARY VENT					
STACK & STACK VENT	SECONDARY VENT	SYSTEM I, II, III, IV Q MAX (L/s)			
DN	DN	SQUARE # ENTRIES	SWEPT ENTRIES		
60	50	0.7	0.9		
70	50	2.0	2.6		
80*	50	2.6	3.4		
90*	50	3.5	4.6		
100**	50	5.6	7.3		
125	70	7.6	10.0		
150	80	12.4	18.3		
200	100	21.0	27.3		

^{*} Minimum size where WC's are connected in system II.

Terrain Q Technical Manual 2021

primary vent

TABLE C: STACK WITH PRIMARY VENT					
SYSTEM I, II, III, IV Q MAX (L/s)					
SQUARE # ENTRIES SWEPT ENTRIES					
0.5	0.7				
1.5	2.0				
2.0	2.6				
2.7	3.5				
4.0	5.2				
5.8	7.6				
9.5	12.4				
16.0	21.0				
	SYSTEM I Q MA SQUARE # ENTRIES 0.5 1.5 2.0 2.7 4.0 5.8 9.5				

- Minimum size where WC's are connected in system II.
 - junctions that are more than 45°, or has a centre line radius less than the internal pipe diameter.

Table C: Stack with only

** Minimum size where WC's are connected in system I, III, IV. # Equal branch

SECTION 7
INSTALLATION

DESIGN ONSIDERATION

Terrain Q Technical Manual 2021

^{**} Minimum size where WC's are connected in system I, III, IV. # Equal branch junctions that are more than 45°, or has a centre line radius less than the internal pipe diameter.

8. Fire Sleeves

Sleeves

The Terrain Firetrap Sleeve is a cost-effective product for the fire stopping of pipe penetrations whilst maintaining similar thermal and acoustic properties as standard mineral fibre insulation. The Terrain Firetrap Sleeve was developed with ease of installation in mind.

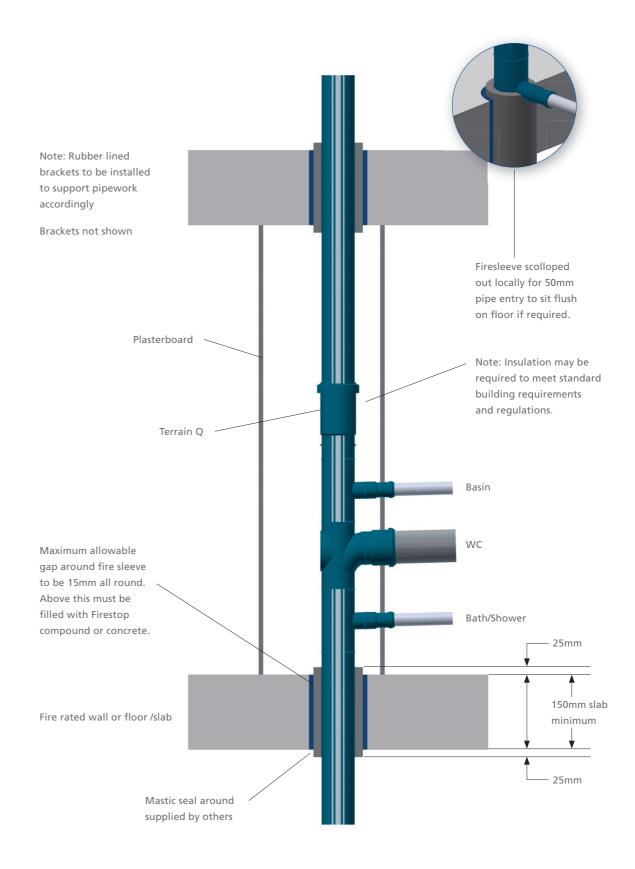
The sleeve can be quickly and simply fitted onto the pipe and slid into the penetration ensuring that there are no air gaps around the sleeves by filling with mortar or mastic. In a fire situation, the sleeve expands to fill the available space (15mm max) between the pipe and the penetration and will crush and close off plastic drainage pipes. The pipe forms a solid char preventing the passage of fire and smoke to the adjacent compartment.

APPLICATIONS

For Terrain PVC, Terrain FUZE and Terrain Q above ground drainage through:

- Concrete, masonry or plasterboard partitions
- Concrete floor constructions

FEATURES AND BENEFITS


- Up to 4 Hour Fire Rating to BS 476 Part 20, BS EN 1366-3
- Protects pipe above and below the slab
- Cost effective
- One sleeve can replace two collars on a horizontal installation
- Easy installation
- Don't have to drill slab
- No need for mechanical fixings
- No mastic is required between the pipe and fire sleeve, providing a close fit
- Easily cut to size to minimise wastage
- Simple to install without special tools or skills
- · Will accept hole irregularities of up to 15mm
- Can be retro-fitted
- Offers excellent acoustic insulation
- Maintains the thermal insulation of the pipe through the slab or wall penetration
- Maintains vapour seal of existing insulation
- Allows for thermal movement of pipe

PART NO.	PIPE DIA. SUITABLE FOR mm	SLEEVE HOLE DIA. mm	SLEEVE OUTSIDE DIA. mm	LENGTH mm
1925.42	40	42	92 - 104	300
1925.54	50	54	104 - 116	300
1925.76	75	76	126 - 138	300
1925.114	110	114	164 - 176	300
1925.169	160	169	219 - 231	300

Table 8.01

Fire protection for vertical Terrain Q pipework in a NON fire rated duct

9. System Testing and Maintenance

Terrain Q should be tested in accordance with guidelines stated within BS EN 12056-2: 2000 (Annex NG.3.1) which lays out the following:

NG.3 Testing

NG.3.1 AIR TEST

NOTE: Normally this test is carried out to confirm that all pipes and fittings are airtight. It should be completed in one operation but for large multi-storey systems testing in sections may be necessary.

NG.3.1.1 PREPARATION

The water seals of sanitary appliances should be fully charged and test plugs or bags inserted into the open ends of the pipework to be tested. To ensure that there is a satisfactory air seal at the base of the stack, or at the lowest plug or bag in the stack if only a section of the pipework is to be tested, a small quantity of water sufficient to cover the plug or bag can be allowed to enter the system.

One of the remaining test plugs should be fitted with a tee piece, with a cock on each branch, and one branch being connected by means of a flexible tube to a manometer. Alternatively, a flexible tube from a tee piece fitted with cocks on its other two branches can be passed through the water seal of a sanitary appliance. Any water trapped in this tube should be removed and then a manometer can be connected to one of the branches.

NG.3.1.2 APPLICATION

Air is pumped into the system through the other branch of the tee piece until a pressure equal to 38 mm water gauge is obtained. The air inlet cock is then closed and pressure in the system should remain constant for a period of not less than 3 min.

NG.3.1.3 LEAK LOCATION

NOTE: Defects revealed by an air test may be located by the methods given in NG.3.1.3.1, NG.3.1.3.2 and NG.3.1.3.3.

NG.3.1.3.1 SMOKE

A smoke producing machine may be used which will introduce smoke under any pressure into the defective pipework.

Leakage may be observed as the smoke escapes. Smoke cartridges containing special chemicals should be used with caution, taking care that the ignited cartridge is not in direct contact with the pipework and that the products of combustion do not have a harmful effect upon the materials used for the discharge pipe system. Smoke testing of plastics pipework should be avoided due to naphtha having a detrimental effect, particularly on ABS, PVC-U and MUPVC. Rubber jointing components can also be adversely affected.

NG.3.1.3.2 SOAP SOLUTION

With the pipework subject to an internal pressure using the smoke machine method as described in NG.3.1.3.1, a soap solution can be applied to the pipes and joints. Leakage can be detected by the formation of bubbles.

NG.3.1.3.3 WATER TEST

There is no justification for a water test to be applied to the whole of the plumbing system. The part of the system mainly at risk is that below the lowest sanitary appliance, and this may be tested by inserting a test plug in the lower end of the pipe and filling the pipe with water up to the flood level of the lowest sanitary appliance, provided that the static head does not exceed 6m.

*For accurate readings, please ensure equipment is regularly checked.

Air pressure test to comply with BS EN 12056-2

For testing a stack with connections

SCREWED TEST PLUG

- Blank or open
- For use in pipe ends
- Manufactured and supplied by others

AIR BAG

- Blank
- For use in access pipe/ expansion socket/pipe ends
- Manufactured and supplied by others

Traps must be filled with water to ensure there is positive pressure within the system to seal the waste inlet.

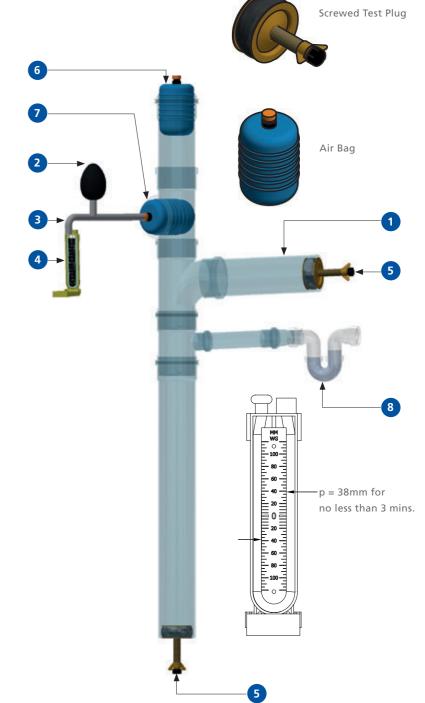



Table 9.01

Permission to reproduce extracts from BS EN 12056-2:2000 is granted by BSI. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

NG.4.1 GENERAL

Discharge pipe systems should be kept in a clean and sound condition in order to maintain maximum efficiency. This is facilitated by designing in accordance with the recommendations in this national annex.

The following points should be noted:

- When access covers, caps and clearing eyes are removed, damaged packing, ring seals, washers and loose fittings should be renewed before replacement.
- Care should be taken in the use of chemical descaling agents, which are often of a corrosive nature and materials employed in the pipe system should be clearly identified before treatment to ensure that the internal surfaces are not subject to damaging chemical attack.
- Caution is necessary when employing the methods of clearing obstructions which involve the use of air or water at high pressures.
- Hand operated rods for removing blockages in discharge pipes should be capable of passing through the system without damaging the internal surfaces of pipes and fittings.

- Mechanised rodding equipment should only be used by properly trained operators and the pipework to be cleared should be thoroughly examined in advance to enable selection of the appropriate cleaning attachments.
- In renewing paintwork care should be taken to preserve any distinguishing colours which may have been used for identification purposes. Reference should be made to BS 1710.

NG.4.2.DEPOSITS DUE TO MISUSE OF THE DISCHARGE SYSTEM

Completely or partial blockages due to large objects or compacted masses, such as toilet paper and sanitary towels, can usually be loosened by rodding. All such material should be removed from the system at the nearest access point.

NG.4.3 PERIODIC INSPECTION

In addition to general maintenance work, periodic inspections and tests may be advisable to ascertain if there is any misuse or negligence. All defects should be fixed.

Terrain Q Technical Manual 2021

52

10. System Specification

Overview

Terrain Q soil and waste drainage system consists of:

- A range of extruded polypropylene multi-layer pipes
- A range of injection moulded polypropylene composite fittings
- The main jointing method is ring seal jointing
- All pipes and fittings are blue in colour – RAL Code: Blue external layer RAL 5001 Black intermediate layer RAL 9004 White internal layer RAL 9003

All fittings are manufactured under BS EN 1451. Polypipe Building Services operates and is accredited to the following management systems:

- BS EN ISO 9001 Quality Management Standard
- BS EN ISO14001 Environmental Management Standard
- BS EN ISO 45001 OHSAS (Health and Safety)

All component parts of the system shall be covered by manufacturer's warranty which can be found at the back of the book or in our terms of use section of the website.

OPERATING PRESSURE AND TEMPERATURE

- Terrain Q system is recommended for use as a gravity soil and waste system. It has a nominal pressure rating of 0.5bar.
- Terrain Q system shall work effectively over the temperature range -20°C to +80°C.
- Intermittent temperatures of 97°C can be accommodated for a period of 2 minutes.

SYSTEM SIZING - PIPE

Terrain Q system is supplied in the following metric sizes:

OD mm	40	50	75	110	160	200
ID mm	36.4	46.4	71.2	104.6	152.2	190.2

Table 10.01

TEST RESULTS

ACOUSTIC - BENCHMARK TEST BS EN 14366					
FLOW RATE I/s					
TERRAIN Q	0.5	1	2	4	
Airborne	48	49	52	54	
Structure-borne	16	18	19	20	

able 10.02

FIRE - BENCHMARK TEST BS EN 13501						
FIRE CLASSIFICATION		SMOKE E	MISSION		PRODUC FLAMING	TION OF DROPLETS
В	-	S	1	,	d	0
Hardly combustible Scarce smoke emission. Higher classification can only be achieved with metallic material.					No flaming Highest clas	

Table 10.03

JOINTING METHODS

The main connection method for Terrain Q is a hydrostatic ring sealed joint. Pipe or fitting spigots are pushed into the ring seal socket.

CONTROL OF THERMAL MOVEMENT

Control of thermal movement must be considered for a Terrain Q system. A fixed point is required every 3m for the Terrain Q system i.e. one socket per 3m run either horizontal or vertical shall be fixed to allow effective control of thermal movement. Control of thermal movement must be considered for a Terrain Q system.

A fixed point is required every 3m for the Terrain Q system i.e. one socket per 3m run either horizontal or vertical shall be fixed to allow effective control of thermal movement and allowing for the coefficient of expansion of 0.08(mm/m/°C).

BRACKET TYPES

All bracket types used in the Terrain Q system shall be specifically designed to reduce the passage of vibration from the pipe/fitting surface in to the structure of the building. This can be achieved by the correct type of rubber lined bracket, the rubber lining being designed to optimise vibration de-coupling or, by de-coupling the connection rod back to the building structure by use of a proprietary anti-vibration bracket back-plate. System brackets are provided within the Terrain Q range and are designed not to over-tighten on to the surface of the pipe; to avoid forming an acoustic bridge. Terrain Q rubberlined brackets reduce dB rating by 17. This is an average as over tightening will reduce the acoustic performance.

FIRE SLEEVES

Where pipes penetrate through fire compartments, built-in Firetrap fire sleeves must be provided in accordance with BS 476 and Building Regulations part B. Fire protection is required to Terrain Q pipework sizes 50mm and above outside diameter, where it passes through a designated fire barrier, compartment walls or floors.

ADAPTING TO OTHER MATERIALS

	KEY
NO.	PART
1	110 Terrain Q PVC Branch
2	Straight boss adaptor
8	Terrain Q to PVC adaptor

Table 10.03

110 PVC single branch 704P.104.92B

Straight boss adaptor
PVC 117.2 or 117.5
(Solvent weld to boss horn)

Terrain Q to PVC adaptor

- 6789/DVW 40mm to 1½"
- 6790/DVW 50mm to 2"

Polypipe Middle East

Investing in our business and our people enables us to bring more expertise, more support and more innovation to our customers, helping them to create safe and sustainable commercial buildings, whether newbuild or refurbishment projects.

BUILDING SERVICES SPECIALISM

Having made significant investment in expanding our portfolio, our trusted and well-established Terrain drainage systems, we're committed to working with our customers to provide the best building services solutions for their project. From schools, hospitals and tall buildings to shopping centres, local Municipalities and commercial and industrial developments, we provide drainage and water supply solutions that help our customers create safe and sustainable services within buildings.

SERVICE AND SUPPORT

Recognising the challenges the construction industry faces, we continuously research and develop products and services that enable us to support our customers more – from working with Engineers to design the best solutions for complex projects to helping Contractors overcome labour shortage issues, a lack of on-site storage and on-site waste management. We develop services to support our customers so that together, we can achieve more.

SUPPORTING PRODUCTS AND LITERATURE

With both drainage and water supply systems in its portfolio, Polypipe Middle East has a number of solutions for your next project. More information on these systems can be found at: middleeast.polypipe.com

TAKING YOUR PROJECT FURTHER

As part of the Genuit Group, we have a number of complementary water and climate management systems available to maximise the comfort and efficiency of your commercial building:

Nuaire Ventilation Systems

Our Nuaire brand has been at the forefront of packaged Air Handling Units (AHUs) for over 20 years, designing and manufacturing market leading ranges. Explore the full range of Nuaire ventilation systems at www.nuaire.co.uk.

Polypipe Underfloor Heating

Underfloor heating systems are increasingly popular and are rapidly becoming the heat source of choice for commercial and multi-occupancy residential developments. For more information on our range of Underfloor Heating Systems, controls and manifolds visit: www.polypipeUFH.com.

Polypipe: Inspiring Green Urbanisation

To help address the pressures that urbanisation and climate change place on our built environment, we've developed a new generation of technologies that sustain and optimise urban green assets through extended and fully integrated water management solutions. Systems that make space for water, alleviate flooding and capture, store and reuse rainwater, whilst enabling and inspiring Green Urbanisation. www.polypipe.com/civils/gi

All descriptions and illustrations in this publication are intended for guidance only and shall not constitute a 'sale by description'. All dimensions given are nominal and Polypipe may modify and change the information, products and specifications from time to time for a variety of reasons, without prior notice. The information in this publication is provided 'as is' on December 2021. Updates will not be issued automatically. This information is not intended to have any legal effect, whether by way of advice, representation or warranty (express or implied). We accept no liability whatsoever (to the extent permitted by law) if you place any reliance on this publication you must do so at your own risk. All rights reserved. Copyright in this publication belongs to Polypipe and all such copyright may not be used, sold, copied or reproduced in whole or part in any manner in any media to any person without prior consent. Polypipe is a registered trademark of Polypipe. All Polypipe products are protected by Design Right under CDPA 1988. Copyright © 2021 Polypipe. All rights reserved.

12. **Approvals**

Manufacturing and performance standards

Terrain Q is made to the manufacturing and performance standards stated below. These standards set out the dimensional, physical and mechanical characteristics that each individual product shall conform to.

MANUFACTURING STANDARDS

BS EN 1451 Plastics piping systems for soil and waste discharge (low and high temperature) within the building structure - Polypropylene (PP).

The system is manufactured in accordance with this standard. The system cannot be kitemarked to the standard as the standard does not currently account for multi-layer pipes.

PERFORMANCE STANDARDS

BS EN 14366 Laboratory measurement of noise from waste water installations. Tested at the Fraunhofer institute to establish the solid-borne and air-borne noise characteristics to known installation and prescribed flow rates .

BS EN 13501 Fire

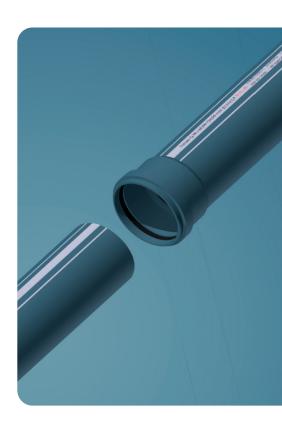
classification of construction products and building elements. Terrain Q achieved a rating of B-s1,d0 which is the highest classification an organic material can achieve.

		Fraunhofer	
Test Report P-8A 6		Indisates for modes, a generates and configures, of code ecopycas for the factory coverables and code, a general coverables, modests, components and lights of coverables.	
Determination of the Acoustic Performance of a Wastewater Installation System in the Laboratory		Service Set for Subjections Set for Subject Indiana	
Ge	M. Anipolas Balding Seniora		
	Sens lighte Business Rask College Road Ayksiland ME20 779		
Text object	Washington installation system of "ISBAIN O" (manufacture: Maj, with pipe dumps: "Boniz," 1000"."	relating of plantic pipes and listings oper Building Sevensi mounted hade by Walfaces.	
	Figures 1 to 3: Decaded result Figures 4 and 5: Test set-up Annex A: Measurement	ot neuts s refug, noise exclusion, security	
	Attigue P. Production of a Description of a		
Test date:	The measuremers was carried out o facilities of the Fraunhalter institute t		
	Stuttgart, Aday 25, 2021 Responses Town	Rad of Laterapy	
	601	Lil	
	y, extend ted according to DN LN DQ 11-01.	ER Opt-Ing/D4'S Other	
mentioned measuring results each is subject to written permission by	Sindy rules to the investigated time of the Roundoller Institute for Building	Size Alignotication of the document in	
Author State Control State Control - Additional State Control State Control Control Control State Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contr	Install of idelessations		
THE RESERVE OF THE PARTY OF THE	D-JOSEPH ST.	Cours Section	

Notes

Terrain Q Technical Manual 2021 Terrain Q Technical Manual 2021

8 Terrain Q Technical Manual 2021


59

Notes			

Notes		
	-	
	-	
	-	

Terrain Q.Design, specification and installation guide

Polypipe Middle East

Tel: +971 4 807 3000 Email: middleeast@polypipe.com middleeast.polypipe.com/terrain-q

